Skip to main content
Log in

Optical and electrochemical sol-gel sensors for inorganic species

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The use of sol-gels as a sensing matrix for the development of unique sensing strategies is discussed. Sol-gels offer almost limitless possibilities for sensing substrates due to the variety of physical properties that can be obtained by altering a number of discussed fabrication conditions and techniques. By careful consideration of the sensing requirements, novel detection methods have been developed for a variety of analytes and applications. Here, sol-gels have been used to monitor pH at the extreme ends of the scale ([H+] = 1–11 M and [OH] = 1–10 M) and in mixed solvent/solute systems using dual sensing approaches. The use of ligand-grafted sol-gel monoliths for optical determination of metal ion species is also discussed. The electrochemical determination of Cr(VI) by electrodeposited sol-gel modified electrodes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinker C J, Scherer G W. Sol-gel Science. The Physics and Chemistry of Sol-gel Processing. Boston: Academic Press, 1990

    Google Scholar 

  2. Hench L L, West J K. The sol-gel process. Chem Rev, 1990, 90: 33–72

    Article  CAS  Google Scholar 

  3. Allain L R, Sorasaenee K, Xue Z. Doped thin-film sensors via a sol-gel process for high-acidity determination. Anal Chem, 1997, 69: 3076–3080

    Article  CAS  Google Scholar 

  4. Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, Gun J. Organically modified sol-gel sensors. Anal Chem, 1995, 67: 22A–30A

    Article  CAS  Google Scholar 

  5. Allain L R, Canada TA, Xue Z. Optical sensors and the salt effect. A dual-transducer approach to acidity determination in a salt-containing concentrated strong acid. Anal Chem, 2001, 73: 4592–4598

    Article  CAS  Google Scholar 

  6. Brinker C, Hurd A, Schunk P, Frye G, Ashley C. Review of sol-gel thin film formation. J Non-Cryst Solids, 1992, 147-148: 424–436

    Article  CAS  Google Scholar 

  7. Schubert U, Huesing N, Lorenz A. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater, 1995, 7: 2010–2027

    Article  CAS  Google Scholar 

  8. Carey W P, DeGrandpre M D, Jorgensen B S. Polymer-coated cylindrical waveguide absorption sensor for high acidities. Anal Chem, 1989, 61: 1674–1678

    Article  CAS  Google Scholar 

  9. Carey W P, Jorgensen B S. Optical sensors for high acidities based on fluorescent polymers. Appl Spectrosc, 1991, 45: 834–838

    Article  CAS  Google Scholar 

  10. Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic-inorganic nanocomposites. J Mater Chem, 2005, 15: 3559–3592

    Article  CAS  Google Scholar 

  11. McDonagh C, MacCraith B D, McEvoy A K. Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase. Anal Chem, 1998, 70: 45–50

    Article  CAS  Google Scholar 

  12. Yost T L Jr, Fagan B C, Allain L R, Barnes C E, Dai S, Sepaniak M J, Xue Z. Crown ether-doped sol-gel materials for strontium(II) separation. Anal Chem, 2000, 72: 5516–5519

    Article  CAS  Google Scholar 

  13. Dunn B, Zink J I. Optical properties of sol-gel glasses doped with organic molecules. J Mater Chem, 1991, 1: 903–913

    Article  CAS  Google Scholar 

  14. Allain L R, Xue Z. Optical sensors for the determination of concentrated hydroxide. Anal Chem, 2000, 72: 1078–1083

    Article  CAS  Google Scholar 

  15. MacCraith B, Ruddy V, Potter C, O’Kelly B, McGilp J. Optical waveguide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass. Electron Lett, 1991, 27: 1247–1248

    Article  CAS  Google Scholar 

  16. Lobnik A, Oehme I, Murkovic I, Wolfbeis O S. pH optical sensors based on sol-gels: chemical doping versus covalent immobilization. Anal Chim Acta, 1998, 367: 159–165

    Article  CAS  Google Scholar 

  17. Shamsipur M, Azimi G. High-acidity optical sensors based on sol-gel-derived thin films. Anal Lett, 2001, 34: 1603–1616

    Article  CAS  Google Scholar 

  18. Wang E, Chow K, Wang W, Wong C, Yee C, Persad A, Mann J, Bocarsly A. Optical sensing of HCl with phenol red doped sol-gels. Anal Chim Acta, 2005, 534: 301–306

    Article  CAS  Google Scholar 

  19. Canada T, Allain L, Beach D, Xue Z. High-acidity determination in salt-containing acids by optical sensors. The scope of a dualtransducer approach and the Hammett acidity function. Anal Chem, 2002, 74: 2535–2540

    Article  CAS  Google Scholar 

  20. Canada T A, Xue Z. High-basicity determination in mixed water-alcohol solutions by a dual optical sensor approach. Anal Chem, 2002, 74: 6073–6079

    Article  CAS  Google Scholar 

  21. Canada T A, Beach D B, Xue Z. Optical sensors for the determination of concentrated hydroxide. Characterization of the sensor materials and evaluation of the sensor performance. Anal Chem, 2005, 77: 2842–2851

    Article  CAS  Google Scholar 

  22. Allain L R, Xue Z. Hysteresis in optical sensing and its impact on the analytical error of a calibration-free acid sensor. Anal Chim Acta, 2001, 433: 97–102

    Article  CAS  Google Scholar 

  23. Clavier C W, Rodman D L, Sinski J F, Allain L R, Im H, Yang Y, Clark J C, Xue Z. A method for the preparation of transparent mesoporous silica sol-gel monoliths containing grafted organic functional groups. J Mater Chem, 2005, 15: 2356–2361

    Article  CAS  Google Scholar 

  24. Rodman D L, Pan H, Clavier C W, Feng X, Xue Z. Optical metal ion sensor based on diffusion followed by an immobilizing reaction. Quantitative analysis by a mesoporous monolith containing functional groups. Anal Chem, 2005, 77: 3231–3237

    Article  CAS  Google Scholar 

  25. Oehme I, Wolfbeis O S. Optical sensors for determination of heavy metal ions. Microchim Acta, 1997, 126: 177–192

    Article  CAS  Google Scholar 

  26. Carrington N A, Thomas G H, Rodman D L, Beach D B, Xue Z. Optical determination of Cr(VI) using regenerable, functionalized sol-gel monoliths. Anal Chim Acta, 2007, 581: 232–240

    Article  CAS  Google Scholar 

  27. Zevin M, Reisfeld R, Oehme I, Wolfbeis O S. Sol-gel-derived optical coatings for determination of chromate. Sensor Actuat B-Chem, 39: 235–238

  28. Lan E H, Dave B C, Fukuto J M, Dunn B, Zink J I, Valentine J S. Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties. J Mater Chem, 1999, 9: 45–53

    Article  CAS  Google Scholar 

  29. Narang U, Prasad P N, Bright F V, Ramanathan K, Kumar N D, Malhotra B D, Kamalasanan M N, Chandra S. Glucose biosensor based on a sol-gel-derived platform. Anal Chem, 1994, 66: 3139–3144

    Article  CAS  Google Scholar 

  30. Rao M, Dave B C. “Smart” glasses. Molecular programming of rapid dynamic responses in organosilica sol-gels. Adv Mater, 2002, 14: 443–447

    Article  CAS  Google Scholar 

  31. Jena B K, Raj C R. Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. Talanta, 2008, 76: 161–165

    Article  CAS  Google Scholar 

  32. Carrington N A, Yong L, Xue Z. Electrochemical deposition of sol-gel films for enhanced chromium(VI) determination in aqueous solutions. Anal Chim Acta, 2006, 572: 17–24

    Article  CAS  Google Scholar 

  33. Walcarius A, Mandler D, Cox J A, Collinson M, Lev O. Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry. J Mater Chem, 2005, 15: 3663–3689

    Article  CAS  Google Scholar 

  34. Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S. Sol-gel materials in electrochemistry. Chem Mater, 1997, 9: 2354–2375

    Article  CAS  Google Scholar 

  35. Alber K S, Cox J A. Electrochemistry in solids prepared by sol-gel processes. Microchim Acta, 1997, 127: 131–147

    Article  CAS  Google Scholar 

  36. Deepa P N, Kanungo M, Claycomb G, Sherwood P M A, Collinson M M. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design. Anal Chem, 2003, 75: 5399–5405

    Article  CAS  Google Scholar 

  37. Walcarius A, Sibottier E. Electrochemically-induced deposition of amine-functionalized silica films on gold electrodes and application to Cu(II) detection in (hydro)alcoholic medium. Electroanal, 2005, 17: 1716–1726

    Article  CAS  Google Scholar 

  38. Shacham R, Avnir D, Mandler D. Electrodeposition of methylated sol-gel films on conducting surfaces. Adv Mater, 1999, 11: 384–388

    Article  CAS  Google Scholar 

  39. Shi Y, Slaterbeck A F, Seliskar C J, Heineman W R. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 1. Demonstration of concept with ferricyanide. Anal Chem, 1997, 69: 3679–3686

    Article  CAS  Google Scholar 

  40. Kroschwitz J. Encyclopedia of Chemical Technology. New York: Wiley, 1993.

    Google Scholar 

  41. Earnshaw A, Greenwood N. Chemistry of the Elements, 2nd ed. Oxford: Butterworth-Heinemann, 1997

    Google Scholar 

  42. Lev O. Diagnostic applications of organically-doped sol-gel porous glass. Analusis, 1992, 20: 543–553

    CAS  Google Scholar 

  43. Bishop E, ed. Indicators. New York: Pergamon Press, 1972

    Google Scholar 

  44. Gupta V D, Reed J B Jr. First pKa values of some acid-base indicators. J Pharm Sci, 1970, 59: 1683–1685

    Article  Google Scholar 

  45. Avnir D. Organic chemistry within ceramic matrixes: doped sol-gel materials. Acc Chem Res, 1995, 28: 328–334

    Article  CAS  Google Scholar 

  46. Rottman C, Ottolenghi M, Zusman R, Lev O, Smith M, Gong G, Kagan M, Avnir D. Doped sol-gel glasses as pH sensors. Mater Lett, 1992, 13: 293–298

    Article  CAS  Google Scholar 

  47. Ding J, Shahriari M, Sigel G. Fibre optic pH sensors prepared by sol-gel immobilisation technique. Electro Lett, 1991, 27: 1560–1562

    Article  CAS  Google Scholar 

  48. Paul M A, Long F A. H0 and related indicator acidity function. Chem Rev, 1957, 57: 1–45

    Article  CAS  Google Scholar 

  49. Shamsipur M, Abbasitabar F, Zare-Shahabadi V, Shahabadi, Akhond M. Broad-range optical pH sensor based on binary mixed-indicator doped sol-gel film and application of artificial neural network. Anal Lett, 2008, 41: 3113–3123

    Article  CAS  Google Scholar 

  50. Umemura T, Hotta H, Abe T, Takahashi Y, Takiguchi H, Uehara M, Odake T, Tsunoda K. Slab optical waveguide high-acidity sensor based on an absorbance change of protoporphyrin IX. Anal Chem, 2006, 78: 7511–7516

    Article  CAS  Google Scholar 

  51. Luo F L, Liu Z H, Chen T L. An optical chemical sensing membrane for the determination of ph. Chinese J Anal Chem, 2005, 33: 483–486

    CAS  Google Scholar 

  52. Xu H, Sadik O A. Design of a simple optical sensor for the detection of concentrated hydroxide ions in an unusual pH range. Analyst 2000, 125: 1783–1786

    Article  CAS  Google Scholar 

  53. Liu Z, Luo F, Chen T. Polymeric ph indicators immobilized pva membranes for optical sensors of high basicity based on a kinetic process. Anal Chim Acta, 2004, 519: 147–153

    Article  CAS  Google Scholar 

  54. Safavi A, Sadeghi M. Development of an optode membrane for high pH values. Spectrochim Acta A, 2007, 66: 575–577

    Article  Google Scholar 

  55. Ghattas A, Abu-Reziq R, Avnir D, Blum J. Exhaustive hydrodechlorination of chlorinated aromatic environmental pollutants to alicyclic compounds. Green Chem, 2003, 5: 40–43

    Article  CAS  Google Scholar 

  56. Feng X, Fryxell G E, Wang L, Kim A Y, Liu J, Kemner K M. Functionalized monolayers on ordered mesoporous supports. Science, 1997, 276: 923–926

    Article  CAS  Google Scholar 

  57. Collinson M M, Howells A R. Sol-gels and electrochemistry: Research at the intersection. Anal Chem, 2000, 72: 702A–709A

    CAS  Google Scholar 

  58. Murray R. Molecular Design of Electrode Surfaces, vol. 22. New York: Wiley, 1992

    Google Scholar 

  59. Gelman F, Blum J, Avnir D. One-pot sequences of reactions with sol-gel entrapped opposing reagents: an enzyme and metal-complex catalysts. J Am Chem Soc, 2002, 124: 14460–14463

    Article  CAS  Google Scholar 

  60. Chow E, Gooding J J. Peptide modified electrodes as electrochemical metal ion sensors. Electroanal, 2006, 18: 1437–1448

    Article  CAS  Google Scholar 

  61. Zanello P. Inorganic Electrochemistry: Theory, Practice and Applications. Cambridge: Royal Society of Chemistry, 2003

    Google Scholar 

  62. Im H, Yang Y, Allain L R, Barnes C E, Dai S, Xue Z. Funtionalized sol-gels for selective copper(II) separation. Environ Sci Technol, 2000, 34: 2209–2214

    Article  CAS  Google Scholar 

  63. Dai S, Burleigh M C, Ju Y H, Gao H J, Lin J S, Pennycook S J, Barnes C E, Xue Z L. Hierarchically imprinted sorbents for the separation of metal ions. J Am Chem Soc, 2000, 122: 992–993

    Article  CAS  Google Scholar 

  64. Dai S, Shin Y, Ju Y, Burleigh M C, Lin J, Barnes C E, Xue Z. A new methodology to functionalize surfaces of ordered mesoporous materials based on ion exchange reactions. Adv Mat, 1999, 11: 1226–1230

    Article  CAS  Google Scholar 

  65. Dai S, Burleigh M C, Shin Y, Morrow C C, Barnes C E, Xue Z. Imprint coating: A novel synthesis of selective functionalized ordered mesoporous sorbents. Angew Chem Int Ed Engl, 1999, 38: 1235–1239

    Article  CAS  Google Scholar 

  66. Eversole W G, Doughty E W. The diffusion coefficient and apparent radius of the cupric ion in silica gels. J Phys Chem, 1936, 40: 55–60

    Article  CAS  Google Scholar 

  67. Yong L, Armstrong K C, Dansby-Sparks R N, Carrington N A, Chambers J Q, Xue Z. Quantitative analysis of trace chromium in blood samples. Combination of the advanced oxidation process with catalytic adsorptive stripping voltammetry. Anal Chem, 2006, 78: 7582–7587

    Article  CAS  Google Scholar 

  68. Vincent J B. Elucidating a biological role for chromium at a molecular level. Acc Chem Res, 2000, 33: 503–510

    Article  CAS  Google Scholar 

  69. Zhang Y, Ji H, Brown G M, Thundat T. Detection of CrO4 2− using a hydrogel swelling microcantilever sensor. Anal Chem, 2003, 75: 4773–4777

    Article  CAS  Google Scholar 

  70. Lin L, Lawrence N S, Thongngamdee S, Wang J, Lin Y. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta, 2005, 65: 144–148

    Article  CAS  Google Scholar 

  71. Turyan I, Mandler D. Selective determination of Cr(VI) by a self-assembled monolayer-based electrode. Anal Chem, 1997, 69: 894–897

    Article  CAS  Google Scholar 

  72. Collinson M M, Rausch C G, Voigt A. Electroactivity of redox probes encapsulated within sol-gel-derived silicate films. Langmuir, 1997, 13: 7245–7251

    Article  CAS  Google Scholar 

  73. Etienne M, Walcarius A. Evaporation induced self-assembly of templated silica and organosilica thin films on various electrode surfaces. Electrochem Commun, 2005, 7: 1449–1456

    Article  CAS  Google Scholar 

  74. Fireman-Shoresh S, Turyan I, Mandler D, Avnir D, Marx S. Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films. Langmuir, 2005, 21: 7842–7847

    Article  CAS  Google Scholar 

  75. Kane S A, Iwuoha E I, Smyth M R. Development of a sol-gel based amperometric biosensor for the determination of phenolics. Analyst, 1998, 123: 2001–2006

    Article  CAS  Google Scholar 

  76. Collinson M M, Moore N, Deepa P N, Kanungo M. Electrodeposition of porous silicate films from ludox colloidal silica. Langmuir, 2003, 19: 7669–7672

    Article  CAS  Google Scholar 

  77. Sayen S, Walcarius A. Electro-assisted generation of functionalized silica films on gold. Electrochem Commun, 2003, 5: 341–348

    Article  CAS  Google Scholar 

  78. Turyan I, Mandler D. Selective determination of Cr(VI) by a self-assembled monolayer-based electrode. Anal Chem, 1997, 69: 894–897

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Ling Xue.

Additional information

Supported by the US National Science Foundation, National Institutes of Health, and Measurement and Control Engineering Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dansby-Sparks, R.N., Ouyang, R. & Xue, ZL. Optical and electrochemical sol-gel sensors for inorganic species. Sci. China Ser. B-Chem. 52, 1777–1788 (2009). https://doi.org/10.1007/s11426-009-0278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0278-6

Keywords

Navigation