Skip to main content
Log in

Comparative proteomics analysis of lanthanum citrate complex-induced apoptosis in HeLa cells

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

In a previous study, the lanthanum citrate complex ([LaCit2]3−) has been found to induce apoptosis in the human HeLa cervical cancer cell line. To clarify the mechanism, we carried out comparative proteomics analysis between treated and control cells. Differentially expressed proteins were separated electrophoretically and identified by MALDI-TOF/TOF tandem mass spectrometry. There were profound changes in 14 proteins related to mitochondrial function and oxidative stress, suggesting that mitochondrial dysfunction plays a key role in [LaCit2]3−-induced apoptosis. This was confirmed by a decrease in the mitochondrial transmembrane potential, and increases in cytochrome c release and reactive oxygen species generation in [LaCit2]3−-treated cells. Western blotting analyses show that [LaCit2]3−-induced apoptosis was accompanied by the activation of caspase-9 and the specific proteolytic cleavage of PARP, leading to an increase in the proapoptotic protein Bax and a decrease in the antiapoptotic protein Bcl-2. These results suggest that [LaCit2]3− induced the apoptosis of HeLa cells through oxidative stress mediated pathway involving MT participation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai Y, Li J, Li J, Yu L, Dai G, Hu A, Yuan L, Wen Z. Effects of rare earth compounds on growth and apoptosis of leukemic cell lines. In Vitro Cell Dev Biol Anim, 2002, 38: 373–375

    Article  CAS  Google Scholar 

  2. Yu S, Yuan L, Yang X, Wang K, Ke Y, Qian Z M. La3+-promoted proliferation is interconnected with apoptosis in NIH 3T3 cells. J Cell Biochem, 2005, 94: 508–519

    Article  CAS  Google Scholar 

  3. Yu S, Hu J, Yang X, Wang K, Qian Z M. La3+-induced extracellular signal-regulated kinase (ERK) signaling via a metal-sensing mechanism linking proliferation and apoptosis in NIH 3T3 cells. Biochemistry, 2006, 45: 11217–11225

    Article  CAS  Google Scholar 

  4. Liu Y, Chen D, Jiang W. Anti-tumor effects of LaCl3 on hepatocellular carcinoma in mice (in Chinese). J Chin Rare Earths Soc, 2008, 26: 604–608

    Article  Google Scholar 

  5. Li X, Zhou A, Yu W, Chen X. Effect of lanthanum citrate on two cell lines: human lung cancer cells PG and human gastric carcinoma cells BGC-823 (in Chinese). J Chin Rare Earths Soc, 2000, 18: 156–158

    Google Scholar 

  6. Meyers C A, Smith J A, Bezjak A, Mehta M P, Liebmann J, Illidge T, Kunkler I, Caudrelier J M, Eisenberg P D, Meerwaldt J, Siemers R, Carrie C, Gaspar L E, Curran W, Phan S C, Miller R A, Renschler M F. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Onco, 2004, l22: 157–165

    Google Scholar 

  7. Heffeter P, Jakupec M A, Körner W, Wild S, von Keyserlingk N G, Elbling L, Zorbas H, Korynevska A, Knasmüller S, Sutterlüty H, Micksche M, Keppler B K, Berger W. Anticancer activity of the lanthanum compound [tris(1,10-phenanthroline) lanthanum(III)] trithiocyanate (KP772; FFC24). Biochem Pharmacol, 2006,71: 426–440

    Article  CAS  Google Scholar 

  8. Liu H, Yuan L, Yang X, Wang K. La3+, Gd3+, and Yb3+ induced changes in mitochondrial structure, membrane permeability, cytochrome c release and intracellular ROS level. Chem-Biol Interact, 2003, 146: 27–37

    Article  CAS  Google Scholar 

  9. Dong S, Zhao Y, Liu H, Yang X, Wang K. Duality of effect of La3+ on mitochondrial permeability transition pore depending on the concentration. BioMetals, 2009, DOI10.1007/s10534-009-9244-1

  10. Yu S, Hu J, Yang X, Wang K, Qian Z M. La3+-induced extracellular signalregulated kinase (ERK) signaling via a metal-sensing mechanism linking proliferation and apoptosis in NIH 3T3 cells. Biochemistry, 2006, 45: 11217–11225

    Article  CAS  Google Scholar 

  11. Wang Z M, Lin H K, Zhu S R, Liu T F, Zhou Z F, Chen Y T. Synthesis, characterization and cytotoxicity of lanthanum (III) complexes with novel 1, 10-phenanthroline-2, 9-bis-alpha-amino acid conjugates. Anticancer Drug Des1, 2000, 5: 405–411

    Google Scholar 

  12. Wang Z M, Lin H K, Zhu S R, Liu T F, Chen Y T. Spectroscopy, cytotoxicity and DNA-binding of the lanthanum (III) complex of an L-valine derivative of 1-10-phen-anthroline. J Inorg Biochem, 2002, 89: 97–106

    Article  CAS  Google Scholar 

  13. Shen L M, Lan Z Y, Liu Q, Ni J Z. Apoptosis of cancer cells induced by lanthanum citrate (in Chinese). J Chin Rare Earths Soc, 2009, 27: 441–446

    Google Scholar 

  14. Shen L M, Liu Q, Ni J Z, Hong G Y. A proteomic investigation into the human cervical cancer cell line HeLa treated with dicitratoytterbium (III) complex. Chem Biol Interact, 2009, doi:10.1016/j.cbi.2009.07.013.

  15. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J, 1999, 341: 233–249

    Article  CAS  Google Scholar 

  16. Gogvadze V, Robertson J D, Zhivotovsky B, Orrenius S. Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem, 2001, 276: 19066–19071

    Article  CAS  Google Scholar 

  17. Neuzil J, Wang X F, Dong L F, Low P, Ralph S J. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Letters, 2006, 580: 5125–5129

    Article  CAS  Google Scholar 

  18. Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis, 2007, 12: 835–840

    Article  CAS  Google Scholar 

  19. Duchen M R, McGuinness O, Brown L A, Crompton M. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res, 1993, 27: 1790–1794

    Article  CAS  Google Scholar 

  20. Imberti R, Nieminen A L, Herman B, Lemasters J J. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther, 1993, 265: 392–400

    CAS  Google Scholar 

  21. Ni J Z. Bioinorganic Chemistry of Rare Earth Elements. Beijing: Science Press, 1995. 13–59

    Google Scholar 

  22. Mela L. Interactions of La3+ and local anesthetic drugs with mitochondrial Ca2+ and Mn2+ uptake. Arch Biochem Biophys, 1968, 123: 286–293

    Article  CAS  Google Scholar 

  23. Gincel D, Zaid H, Shoshan-Barmatz V. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J, 2001, 35: 147–155

    Article  Google Scholar 

  24. Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys, 2003, 39: 279–292

    Article  CAS  Google Scholar 

  25. Cai J, Jones D P. Superoxide in apoptosis: mitochondrial generation triggered by cytochrome c loss. J Biol Chem, 1998, 273: 11401–11404

    Article  CAS  Google Scholar 

  26. Kira Y, Sato E F, Inoue M. Association of Cu, Zn-type superoxide dismutase with mitochondria and peroxisomes. Arch Biochem Biophys, 2002, 399: 96–102

    Article  CAS  Google Scholar 

  27. Li Q, Sato E F, Zhu X, Inoue M. A simultaneous release of SOD1 with cytochrome c regulates mitochondria-dependent apoptosis. Mol Cell Biochem, 2008, 322: 151–159

    Article  Google Scholar 

  28. Blander G, de Oliveira RM, Conboy C M, Haigis M, Guarente L. Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem, 2003, 278(40): 38966–38969

    Article  CAS  Google Scholar 

  29. Clemens M J, Bushell M, Morley S J. Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene, 1998, 17: 2921–2931

    Article  CAS  Google Scholar 

  30. Morley S J, McKendrick L, Bushell M. Cleavage of translation initiation factor 4G (eIF4G) during anti-Fas IgM-induced apoptosis does not require signalling through the p38 mitogen-activated protein (MAP) kinase. FEBS Lett, 1998, 438: 41–48

    Article  CAS  Google Scholar 

  31. Cipollini G, Berti A, Fiore L, Rainaldi G, Basolo F, Merlo G, Bevilacqua G, Caligo M A. Down-regulation of the nm23.h1 gene inhibits cell proliferation. Int J Cancer, 1997, 73(2): 297–302

    Article  CAS  Google Scholar 

  32. Otero A S. NM23/nucleoside diphosphate kinase and signal transduction. J Bioenerg Biomembr, 2000, 32: 269–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaZuan Ni.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20637010) and the Shenzhen Bureau of Science, Technology and Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Liu, Q. & Ni, J. Comparative proteomics analysis of lanthanum citrate complex-induced apoptosis in HeLa cells. Sci. China Ser. B-Chem. 52, 1814–1820 (2009). https://doi.org/10.1007/s11426-009-0272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0272-z

Keywords

Navigation