Skip to main content
Log in

A covalent attraction between two molecular cation TTF·+

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level, which exhibits the attraction between two molecular cation TTF·+. The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape. The covalent π/π bonding has the bonding energy of about −21 kcal·mol−1 and is concealed by the Coulombic repulsion between two TTF·+ cations. This intermolecular covalent attraction also influences the structure of the TTF·+ subunit, i.e., its molecular plane is bent by an angle θ = 5.6°. This work provides new knowledge on intermolecular interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang F F, Hou J H, Li Z R, Wu D, Li Y, Lu Z Y, Cao W L. Unusual halogen-bonded complex FBrδ +...δ+BrF and hydrogen-bondedcomplex FBrδ +...δ+HF formed by interactions between two positively charged atoms of different polar molecules, J Chem Phys, 2007, 126: 144301–144305

    Article  Google Scholar 

  2. Zwick F, Jérome D, Margaritondo G, Onellion M, Voit J, Grioni M. Band mapping and quasiparticle suppression in the one-dimensional organic Conductor TTF-TCNQ. Phys Rev Lett, 1998, 81: 2974–2977

    Article  CAS  Google Scholar 

  3. Sleator T, Tycko R. Observation of individual organic molecules at a crystal surface with use of a scanning tunneling microscope. Phys Rev Lett, 1988, 60: 1418–1421

    Article  CAS  Google Scholar 

  4. Andrieux A, Schulz H J, Jerome D, Bechgarrd K. Conductivity of the one-dimensional conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) near commensurability. Phys Rev Lett, 1979, 43: 227–230

    Article  CAS  Google Scholar 

  5. Tomkiewicz Y, Taranko A R, Torrance J B. Roles of the donor and acceptor chains in the metal-insulator transition in TTF-TCNQ (tetrathiafulvalene tetracyanoquinodimethane)n. Phys Rev Lett, 1976, 36: 751–754

    Article  CAS  Google Scholar 

  6. Grobman W D, Pollak R A, Eastman D E, Maas Jr E T, Scott B A. Valence electronic structure and charge transfer in tetrathiofulvalinium tetracyanoquinodimethane (TTF-TCNQ) from photoemission spectroscopy. Phys Rev Lett, 1974, 32: 534–537

    Article  CAS  Google Scholar 

  7. Torrance J B, Tomkiewicz Y, Silverman B D. Enhancement of the magnetic susceptibility of TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) by Coulomb correlations. Phys Rev B, 1977, 15: 4738–4749

    Article  CAS  Google Scholar 

  8. Claessen R, Sing M, Schwingenschlögl U, Blaha P, Dressel M, Jacobsen C S. Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys Rev Lett, 2002, 88: 096402–096405

    Article  CAS  Google Scholar 

  9. Meneghetti M, Pecile C. TTF-TCNE a charge transfer p-molecular crystal with partial ionic ground state: Optical properties and electronmolecular vibrations interaction, J Chem Phys, 1996, 105: 397–407

    Article  CAS  Google Scholar 

  10. Bloch A N, Cowan D O, Bechgaard K, Pyle R E, Banks R H, Poehler T O. Low-temperature metallic behavior and resistance minimum in a new quasi one-dimensional organic conductor. Phys Rev Lett, 1975, 34: 1561–1564

    Article  CAS  Google Scholar 

  11. Tomkiewicz Y, Taranko A R, Schumaker R. Hexamethylene-tetrathiafulvalenium tetracyanoquinodimethanide as a prototype of a quasi-one-dimensional organic conductor. Phys Rev B, 1997, 16: 1380–1386

    Article  Google Scholar 

  12. Dressel M. Spin-charge separation in quasi one-dimensional organic conductors. Naturwissenschaften, 2003, 90: 337–344

    Article  CAS  Google Scholar 

  13. Ziganshina A Y, Ko Y H, Jeon W S, Kim K. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chem Commun, 2004, 806–807

  14. Bozio R, Zanon I, Girlando A, Pecile C. Vibrational spectroscopy of molecular constituents of one dimensional organic conducutrors, Tetrathiofulvalene(TTF), TTF+, and (TTF+)2 dimer. J Chem Phys, 1979, 71, 2282–2293

    Article  CAS  Google Scholar 

  15. Small D, Zaitsev V, Jung Y, Rosokha S V, Head-Gordon M, Kochi J K. Intermolecular π-to-π bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. J Am Chem Soc, 2004, 126: 13850–13858

    Article  CAS  Google Scholar 

  16. Takano Y, Taniguchi T, Isobe H, Kubo T, Morita Y, Yamamoto K, Nakasuji K, Takui T, Yamaguchi K. Hybrid density functional theory studies on the magnetic interactions and the weak covalent bonding for the phenalenyl radical cimeric pair. J Am Chem Soc, 2002, 124: 11122–11130

    Article  CAS  Google Scholar 

  17. Huang J, Kertesz M. Stepwise cope rearrangement of Cyclo-biphenalenyl via an unusual multicenter covalent π-bonded intermediate. J Am Chem Soc, 2006, 128: 7277–7286

    Article  CAS  Google Scholar 

  18. Huang J, Kertesz M. Intermolecular covalent π-π bonding interaction indicated by bond distances, energy bands, and magnetism in biphenalenyl biradicaloid molecular crystal. J Am Chem Soc, 2007, 129: 1634–1643

    Article  CAS  Google Scholar 

  19. Lü J-M, Rosokha S V, Kochi J K. Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged π-radicals: Structures, energetics, and optical transitions. J Am Chem Soc, 2003, 125: 12161–12171

    Article  Google Scholar 

  20. Huang J, Kingsburyb S, Kertesz M. Crystal packing of TCNQ anion π-radicals governed by intermolecular covalentπ-π-bonding: DFT calculations and statistical analysis of crystal structures. Phys Chem Chem Phys, 2008, 10: 2625–2635

    Article  CAS  Google Scholar 

  21. Scherlis D A, Marzari N. π-stacking in charged thiophene oligomers. J Phys Chem B, 2004, 108: 17791–17795

    Article  CAS  Google Scholar 

  22. Novoa J J, Lafuente P, Del Sesto R E, Miller J S. Exceptionally long (⩾2.9 Å) C—C bonds between [TCNE] ions: Two-electron, four-center π*-π* C-C bonding in π-[TCNE] 2−2 . Angew Chem Int Ed, 2001, 40: 2540–2545

    Article  CAS  Google Scholar 

  23. Del Sesto R E, Miller J S, Lafuente P, Novoa J J. Exceptionally long (≥2.9 Å) CC bonding interactions in π-[TCNE] 2−2 dimers: Two-electron four-center cation-mediated CC bonding interactions involving π* electrons. Chem-Eur J, 2002, 8: 4894–4908

    Article  Google Scholar 

  24. Jakowski J, Simons J. Theoretical analysis of the electronic structure and bonding stability of the TCNE dimer dianion (TCNE) 2−2 . J Am Chem Soc, 2003, 125: 16089–16096

    Article  CAS  Google Scholar 

  25. Jung Y, Head-Gordon M. What is the nature of the long bond in the TCNE 2−2 π-dimer? Phys Chem Chem Phys, 2004, 6: 2008–2011

    Article  CAS  Google Scholar 

  26. Brocks G. π-dimers of oligothiophene cations. J Chem Phys, 2000, 112: 5353–5363

    Article  CAS  Google Scholar 

  27. Devic T, Yuan M, Adams J, Fredrickson D C, Lee S, Venkataraman D. The maximin principle of π-radical packings. J Am Chem Soc, 2005, 127: 14616–14627

    Article  CAS  Google Scholar 

  28. Ye X, Li Z-H, Wang W, Fan K, Xu W, Hua Z. The parallel p-p stacking: a model study with MP2 and DFT methods. Chem Phys Lett, 2004, 397: 56–61

    Article  CAS  Google Scholar 

  29. Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F. NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, USA. Weinhold F, Landis C R. Chem Educ Res Pract Eur, 2001, 2: 91–104

    Google Scholar 

  30. Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19: 553–556

    Article  CAS  Google Scholar 

  31. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr., T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K. Foresman J B. Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. GAUSSIAN 03, revision B03. Wallingford: Gaussian Inc, 2004

  32. Kohn W, Becke A D, Parr R G. Density functional theory of electronic structure. J Phys Chem, 1996, 100: 12974–12980

    Article  CAS  Google Scholar 

  33. Kristyan S, Pulay P. Can (semi)local density functional theory account for the London dispersion forces? Chem Phys Lett, 1994, 229: 175–180

    Article  CAS  Google Scholar 

  34. Bally T, Sastry G N. Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A, 1997, 101: 7923–7925

    Article  CAS  Google Scholar 

  35. Sinnokrot M O, Valeev E F, Sherrill C D. Estimates of the ab initio limit for π-π interactions: The benzene dimer. J Am Chem Soc, 2002, 124: 10887–10893

    Article  CAS  Google Scholar 

  36. Corfield P W R, La Placa S J. Structure of the charge-transfer salt 2,2′,5,5′-tetraselenafulvalene-7,7,8,8-tetracyano-p-quinodimethane (TSeF-TCNQ). Acta Cryst, 1996, B52: 384–397

    CAS  Google Scholar 

  37. Wiberg K. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron, 1968, 24: 1083–1096

    Article  CAS  Google Scholar 

  38. Miller J S, Novoa J J. Four-center carbon-carbon bonding. Acc Chem Res, 2007, 40: 189–196

    Article  CAS  Google Scholar 

  39. Huang J, Kingsbury S, Kertesz M. The excited states of π-stacked 9-methyladenine oligomers: a TD-DFT study in aqueous solution. Phys Chem Chem Phys, 2008, 10: 2625–2664

    Article  CAS  Google Scholar 

  40. Martell J M, Boyd R J. An ab initio study of the series of fluorinated ethanes C2HnF6−n (n = 0–6): geometries, total energies, and carbon-carbon bond dissociation energies. J Phys Chem, 1992, 96: 6287–6290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiRu Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20773046)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Wang, Y., Wang, B. et al. A covalent attraction between two molecular cation TTF·+ . Sci. China Ser. B-Chem. 52, 1980–1986 (2009). https://doi.org/10.1007/s11426-009-0262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0262-1

Keywords

Navigation