Skip to main content
Log in

Reversible folding/unfolding of small a-helix in explicit solvent investigated by ABEEMσπ/MM

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

We have performed molecular dynamics simulations on the reversible folding/unfolding of small α-helix (short Ala based peptide Ala5) in explicit water solvent in terms of ABEEMσπ/MM. A dynamics analysis shows that the α-helical turn can be preserved up to a period of about 2 ns at 300 K, which supports the conclusions of Margulis et al. The time trajectory of the root mean square deviation between the heavy atoms of the backbone and the helical reference structure indicate that “helix melting and formation occurs rapidly on a time scale of 0.1 ns at 300 K” is not a felicitous conclusion. We first quantificationally concluded that the helix nucleation can maintain 2 ns, 1–1.5 ns and 0.8 ns for Ala5 at 300 K, 400 K and 500 K, respectively. Furthermore, increasing temperature dose not alter the pathway of folding/unfolding, but change the rate. An analysis of structures in a “transition-state ensemble” shows that helix-to-coil transitions occurs predominantly through breaking of hydrogen bonds at the helix ends (92%), particularly at the C-terminus(50%). Hydrogen bonds’ breaking and formation occurs on a time scale of 0.1 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou R. Trp-cage. Folding free energy landscape in explicit water. Proc Natl Acad Sci USA 2003, 100: 13280–13285

    Article  CAS  Google Scholar 

  2. Jiao Y, Yang P. Metal-amyloid-β peptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer’s disease. Sci China Ser B-Chem, 2007, 50: 453–467

    Article  CAS  Google Scholar 

  3. Jiao Y, Han D X, Yang P. Molecular modeling of the inhibitory mechanism of copper(II) on aggregation of amyloid β-peptide. Sci China Ser B-Chem, 2005, 48: 580–590

    Article  CAS  Google Scholar 

  4. Snow C D, Nguyen H, Pande V S, Gruebele M. Absolute comparison of simulated and experimental protein-folding dynamics. Nature, 2002, 420: 102–106

    Article  CAS  Google Scholar 

  5. Daggett V. Protein Folding Simulation. Chem Rev, 2006, 106: 1898–1916

    Article  CAS  Google Scholar 

  6. Hummer G, Garcia A E, Garde S. Helix nucleation kinetics from molecular simulations in explicit solvent. PROTEINS: Struc, Funct, Genet, 2001, 42: 77–84

    Article  CAS  Google Scholar 

  7. Brooks C L. Helix Coil Kinetics: Folding time III scales for helical peptides from a sequential kinetic model. J Phys Chem, 1996, 100: 2546–2549

    Article  CAS  Google Scholar 

  8. Elmer S, Pande V S. A new twist on the helix-coil transition: A nonbiological helix with protein-like intermediates and traps. J Phys Chem B, 2001, 105: 482–485

    Article  CAS  Google Scholar 

  9. Buchete N V, Straub J E. Mean first-passage time calculations for the coil-to-helix transition: The active helix ising model. J Phys Chem B, 2001, 105: 6684–6697

    Article  CAS  Google Scholar 

  10. Shea J E, Brooks C L. From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem, 2001, 52: 499–535

    Article  CAS  Google Scholar 

  11. Thompson P A, Eaton W A, Hofrichter J. Laser temperature jump study of the helix coil kinetics of an alanine peptide interpreted with a ‘Kinetic Zipper’ model. Biochemistry, 1997, 36: 9200–9210

    Article  CAS  Google Scholar 

  12. Thompson P A, Muñoz V, Jas G S, Henry E R, Eaton W A, Hofrichter J. The helix-coil kinetics of a heteropeptide. J Phys Chem B, 2000, 104: 378–389

    Article  CAS  Google Scholar 

  13. William S, Causgrove T P, Gilmanshin R, Fang K S, Callender R H, Woodruff W H, Dyer R B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry, 1996, 35: 691–697

    Article  Google Scholar 

  14. Lednev I K, Karnoup A S, Sparrow M C, Asher S A. Transient UV Raman spectroscopy finds no crossing barrier between the peptide α-helix and fully random coil conformation. J Am Chem Soc, 2001, 123: 2388–2392

    Article  CAS  Google Scholar 

  15. Werner J H, Dyer R B, Fesinmeyer R M, Andersen N H. Dynamics of the primary processes of protein folding: Helix nucleation. J Phys Chem B, 2002, 106: 487–494

    Article  CAS  Google Scholar 

  16. Jas G S, Eaton W A, Hofrichter J. Effect of viscosity on the kinetics of α-helix and β-hairpin formation. J Phys Chem B, 2001, 105: 261–272

    Article  CAS  Google Scholar 

  17. Huang C, Klemke J W, Getahum Z, DeGrado W F, Gai F. Temperature-dependent helix coil transition of an alanine based peptide. J Am Chem Soc, 2001, 123: 9235–9238

    Article  CAS  Google Scholar 

  18. Clarke D T, Doig A J, Stapley B J, Jones G R. The a-helix folds on the millisecond time scale. Proc Natl Acad Sci USA, 1999, 96: 7232–7237

    Article  CAS  Google Scholar 

  19. Padmanabhan S, Marqusee S, Ridgeway T, Laue T L, Baldwin R L. Relative helix-forming tendencies of nonpolar amino acids. Nature, 1990, 344: 268–270

    Article  CAS  Google Scholar 

  20. Padmanabhan S, Baldwin R L. Helix-stabilizing interaction between tyrosine and leucine or valine when the Spacing is i, i+4. J Mol Biol, 1994, 3: 706–713

    Article  Google Scholar 

  21. Baldwin R L. α-Helix formation by peptides of defined sequence. Biophys Chem, 1995, 55: 127–135

    Article  CAS  Google Scholar 

  22. Rohl C A, Fiori R L, Baldwin R L. Alanine is helix-stabilizing in both template-nucleated and standard peptide helices. Proc Natl Acad Sci USA, 1999, 96: 3682–3687

    Article  CAS  Google Scholar 

  23. Brasseur R. Simulating the folding of small proteins by use of the local minimum energy and the free solvation energy yields native-like structures. J Mol Graph, 1995, 13: 312–322

    Article  CAS  Google Scholar 

  24. Daggett V, Levitt M. Molecular dynamics simulations of helix denaturation. J Mol Biol, 1992, 223: 1121–1138

    Article  CAS  Google Scholar 

  25. Margulis C J, Stern H A, Berne B J. Helix unfolding and intramolecular hydrogen bond dynamics in small α-helices in explicit solvent. J Phys Chem B, 2002, 106: 10748–10752

    Article  Google Scholar 

  26. Hansmann U H, Masuya M, Okamoto Y. Characteristic temperatures of folding of a small peptide. Proc Natl Acad Sci USA, 1997, 94: 10652–10656

    Article  CAS  Google Scholar 

  27. Nakazawa T, Okamoto Y. Electrostatic effects on the [alpha]-helix and [beta]-strand formation of BPTI(16–36) studied by Monte Carlo simulated annealing. J Pept Res, 1999, 54: 230–236

    Article  CAS  Google Scholar 

  28. Hansmann U H, Okamoto Y, Onuchic J N. The folding funnel landscape for the peptide met-enkephalin. Proteins, 1999, 34: 472–483

    Article  CAS  Google Scholar 

  29. Jacchieri S G, Richards N G J. Probing the influence of sequence-dependent interactions upon -helix stability in alanine-based linear peptides. Biopolymers, 1993, 33: 971–984

    Article  CAS  Google Scholar 

  30. Aleman C, Roca R, Luque F J, Orozco M. Helical preferences of alanine, glycine, and aminoisobutyric homopeptides. Proteins, 1997, 28: 83–93

    Article  CAS  Google Scholar 

  31. Sung S S. Folding simulations of alanine-based peptides with lysine residues. Biophys J, 1995, 68: 826–834

    Article  CAS  Google Scholar 

  32. Klein C T, Mayer B, Köhler G, Wolschann P. Influence of solvation on helix formation of poly-alanine studied by multiple annealing simulations. J Mol Struct (Theochem), 1996, 370: 33–43

    Article  CAS  Google Scholar 

  33. Klein C T, Mayer B, Köhler G, Wolschann P. Systematic stepsize variation: Efficient method for searching conformational space of polypeptides. J Comput Chem, 1998, 19: 1470–1481

    Article  CAS  Google Scholar 

  34. Sham Y Y, Ma B, Tsai C J, Nussinov R. Thermal unfolding molecular dynamics simulation of Escherichia coli. Proteins, 2002, 46: 308–320

    Article  CAS  Google Scholar 

  35. Pande V S, Rokhsar D S. Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G. Proc Natl Acad Sci USA, 1999, 96: 9062–9067

    Article  CAS  Google Scholar 

  36. Wong K B, Clarke J, Bond C J, Neira J I, Freund S. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J Mol Biol, 2000, 296: 1257–1282

    Article  CAS  Google Scholar 

  37. Ma B, Nussinov R. Molecular dynamics simulations of the unfolding of beta(2)-microglobulin. Protein Eng, 2003, 16: 561–575

    Article  CAS  Google Scholar 

  38. Jemth P, Gianni S, Day R, Li B, Johnson C M, Daggett V, Fersht A R. Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation. Proc Natl Acad Sci USA, 2004, 101: 6450–6455

    Article  CAS  Google Scholar 

  39. Day R, Bennion B J, Ham S, Daggett V. Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J Mol Biol, 2002, 322: 189–203

    Article  CAS  Google Scholar 

  40. Day R, Daggett V. Ensemble versus single-molecule protein unfolding. Proc Natl Acad Sci USA, 2005, 102: 13445–13450

    Article  CAS  Google Scholar 

  41. Petrovich M, Jonsson A L, Ferguson N, Daggett V, Fersht A R. Phi-analysis at the experimental limits: mechanism of beta-hairpin formation. J Mol Biol, 2006, 360: 865–881

    Article  CAS  Google Scholar 

  42. Beck D A C, Daggett V. Methods for molecular dynamics simulations of protein folding/unfolding. Methods, 2004, 34: 112–120

    Article  CAS  Google Scholar 

  43. Wang T, Wade R C. On the use of elevated temperature in simulations to study protein unfolding mechanisms. J Chem Theory Comput, 2007, 3(4): 1476–1483

    Article  CAS  Google Scholar 

  44. Wu Y, Yang Z Z. Atom-bond electronegativity equalization method fused into molecular mechanics. II. A seven-site fluctuating charge and flexible body water potential function for liquid water. J Phys Chem A, 2004, 108: 7563–7576

    Article  CAS  Google Scholar 

  45. Yang Z Z, Wang C S. Atom-bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J Phys Chem A, 1997, 101: 6315–6321

    Article  CAS  Google Scholar 

  46. Yang Z Z, Wu Y, Zhao D X. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. J Chem Phys, 2004, 120: 2541–2557

    Article  CAS  Google Scholar 

  47. Yang Z Z, Zhang Q. Study of peptide conformation in terms of the ABEEM/MM method. J Comput Chem, 2006, 27: 1–10

    Article  Google Scholar 

  48. Cong Y, Yang Z Z. General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide. Chem Phys Lett, 2000, 316: 324–329

    Article  CAS  Google Scholar 

  49. Cong Y, Yang Z Z, Wang C S, Liu X C, Bao X H. Investigation of the regio- and stereoselectivity of Diels-Alder reactions by newly developed ABEEMσπ model on the basis of local HSAB principle and maximum hardness principle. Chem Phys Lett, 2002, 357: 59–64

    Article  Google Scholar 

  50. Li X, Yang Z Z. Study of lithium cation in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J Phys Chem A, 2005, 109: 4102–4111

    Article  CAS  Google Scholar 

  51. Li X, Yang Z Z. Hydration of Li+-ion in atom-bond electronegativity equalization method-7P water: A molecular dynamics simulation study. J Chem Phys, 2005, 122: 084514

    Article  Google Scholar 

  52. Guan Q M, Yang Z Z. Study on complexes of trypsin and its inhibitors by means of atom-bond electronegativity equalization method fused into molecular mechanics. J Theor Comput Chem, 2007, 6: 731–744

    Article  CAS  Google Scholar 

  53. Yang Z Z, Cui B Q. Atomic charge calculation of metallobiomolecules in terms of the ABEEM method. J Chem Theory Comput, 2007, 3: 1561

    Article  CAS  Google Scholar 

  54. Yang Z Z, Qian P. A study of N-methylacetamide in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J Chem Phys, 2006, 125: 064311

    Article  Google Scholar 

  55. Liu C, Zhao D X, Yang Z Z. ABEEMσπ fluctuating charge force field applied to alanine dipeptide and alanine dipeptide-water systems. J Theor Comput Chem, 2009, in press.

  56. Mayer B, Klein C T. Influence of solvation on the helix-forming tendency of nonpolar amino acids. J Mol Struct (Theochem), 2000, 532: 213–226

    Article  CAS  Google Scholar 

  57. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22: 2577–2637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongZhi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Yang, Z. Reversible folding/unfolding of small a-helix in explicit solvent investigated by ABEEMσπ/MM. Sci. China Ser. B-Chem. 52, 1917–1924 (2009). https://doi.org/10.1007/s11426-009-0257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0257-y

Keywords

Navigation