Skip to main content
Log in

The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The electron-acoustic phonon scattering for charge transport in organic semiconductors has been studied by first-principles density functional theory and the Boltzmann transport equation with relaxation time approximation. Within the framework of deformation-potential theory, the electron-longitudinal acoustic phonon scattering probability and the corresponding relaxation time have been obtained for oligoacene single crystals (naphthalene, anthracene, tetracene and pentacene). Previously, the electron-optic phonon scattering mechanism has been investigated through Holstein-Peierls model coupled with DFT calculations for naphthalene. Numerical results indicate that the acoustic phonon scattering intensity is about 3 times as large as that for the optic phonon and the obtained mobility is in much better agreement with the result of the experiment done for ultrapure single crystals. It is thus concluded that for closely packed molecular crystal where the electron is partly delocalized, acoustic phonon scattering mechanism prevails in the charge transport. Moreover, it is found that the intrinsic electron mobility is even larger than hole mobility. A frontier orbital overlap analysis can well rationalize such behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14: 99–117

    Article  CAS  Google Scholar 

  2. Mori T. Molecular materials for organic field-effect transistors. J Phys: Condens Matter, 2008, 20: 184010

    Article  Google Scholar 

  3. Kitamura M, Arakawa Y. Pentacene-based organic field-effect transistors. J Phys: Condens Matter, 2008, 20: 184011

    Article  Google Scholar 

  4. Adamovich V I, Cordero S R, Djurovich P I, Tamayo A, Thompson M E, D’Andrade B W, Forrest S R. New charge-carrier blocking materials for high efficiency OLEDs. Org Electron, 2003, 4: 77–87

    Article  CAS  Google Scholar 

  5. Spanggaard H, Krebs F C. A brief history of the development of organic and polymeric photovoltaics. Sol Energy Mater & Sol Cells, 2004, 83: 125–146

    Article  CAS  Google Scholar 

  6. Berggren M, Nilsson D, Robinson N D. Organic materials for printed electronics. Nat Mater, 2007, 6: 3–5

    Article  CAS  Google Scholar 

  7. Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911–918

    Article  CAS  Google Scholar 

  8. Karl N. Charge carrier transport in organic semiconductors. Synth Met, 2003, 133: 649–657

    Article  Google Scholar 

  9. de Boer R W I, Gershenson M E, Morpurgo A F, Podzorov V. Organic single-crystal field-effect transistors. Phys Status Solidi A, 2004, 201: 1302–1331

    Article  Google Scholar 

  10. Payne M M, Parkin S R, Anthony J E, Kuo C C, Jackson T N. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V·s. J Am Chem Soc, 2005, 127: 4986–4987

    Article  CAS  Google Scholar 

  11. Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R J, Brédas J L. Charge transport in organic semiconductors. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  12. Marcus R A. Electron transfer reactions in chemistry: Theory and experiment. Rev Mod Phys, 1993, 65: 599–610

    Article  CAS  Google Scholar 

  13. Wang L J, Nan G J, Yang X D, Peng Q, Li Q K, Shuai Z G. Computational methods for design of organic materials with high charge mobility. Chem Soc Rev (accepted)

  14. Cheng Y C, Silbey R J, da Silva Filho D A, Calbert J P, Cornil J, Brdéas J L. Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J Chem Phys, 2003, 118: 3764–3774

    Article  CAS  Google Scholar 

  15. Wang L J, Peng Q, Li Q K, Shuai Z G. Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal. J Chem Phys, 2007, 127: 044506

    Article  CAS  Google Scholar 

  16. Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals. Phys Rev, 1950, 80: 72–80

    Article  CAS  Google Scholar 

  17. Beleznay F B, Bogár F, Ladik J. Charge carrier mobility in quasi-one-dimensional systems: Application to a guanine stack. J Chem Phys, 2003, 119: 5690–5695

    Article  CAS  Google Scholar 

  18. Wang G, Huang Y. Theoretical study on the co-crystal composed of poly(diiododiacetylene) and bis(nitrile)oxalamide. J Phys Chem Solids, 2003, 68: 2003–2007

    Article  Google Scholar 

  19. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  20. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  22. Ponomarev V I, Filipenko O S, Atovmyan L O. Crystal and molecular structure of naphthalene at -150 degrees C. Kristallografiya, 1976, 21: 392–394

    CAS  Google Scholar 

  23. Brock C P, Dunitz J D. Temperature dependence of thermal motion in crystalline anthracene. Acta Cryst, 1990, B46: 795–806

    CAS  Google Scholar 

  24. Holmes D, Kumaraswamy S, Matzger A J, Vollhardt K P C. On the nature of nonplanarity in the [n]phenylenes. Chem Eur J, 1999, 5: 3399–3412

    Article  CAS  Google Scholar 

  25. Madsen G K H, Singh D J. BoltzTraP: A code for calculating band-structure dependent quantities. Comput Phys Commun, 2006, 175: 67–71

    Article  CAS  Google Scholar 

  26. Yang J, Li H M, Wu T, Zhang W Q, Chen L D, Yang J H. Evaluation of half-heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv Funct Mater, 2008, 18: 2880–2888

    Article  CAS  Google Scholar 

  27. Ziman J M. Principles of the Theory of Solids. 2nd ed. London: Cambridge University Press, 1972. 211–229

    Google Scholar 

  28. Wei S H, Zunger A. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Phys Rev B, 1999, 60: 5404–5411

    Article  CAS  Google Scholar 

  29. Brédas J L, Calbert J P, da Silva Filho D A, Cornil J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci U S A, 2002, 99: 5804–5809

    Article  Google Scholar 

  30. Kepler R G. Charge carrier production and mobility in anthracene crystals. Phys Rev, 1960, 119: 1226–1229

    Article  CAS  Google Scholar 

  31. Jurchescu O D, Baas J, Palstra T T M. Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett, 2004, 84: 3061–3063

    Article  CAS  Google Scholar 

  32. de Wijs G A, Mattheusa C C, de Groot R A, Palstra T T M. Anisotropy of the mobility of pentacene from frustration. Synth Met, 2003, 139: 109–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Shuai.

Additional information

Supported by the Ministry of Science and Technology of China (Grant Nos. 2006CB806200, 2006CB932100, and 2009CB623600) and the National Natural Science Foundation of China (Grant No. 20833004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Long, M., Wang, D. et al. The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. Sci. China Ser. B-Chem. 52, 1646–1652 (2009). https://doi.org/10.1007/s11426-009-0244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0244-3

Keywords

Navigation