Skip to main content
Log in

Luminescence resonance energy transfer based on β-NaYF4:Yb,Er nanoparticles and TRITC dye

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

β-NaYF4:Yb,Er nanoparticles (NPs) are one of the most efficient upconversion materials, which can convert near-infrared light to higher-energy light through multiple photon absorptions or energy transfer. In addition, they may be attractive alternative donors for luminescence resonance energy transfer (LRET) studies, because of their sharp absorption and emission profiles, high quantum yields, large anti-stokes shifts, long lifetime, low toxicity, and superior photo-stability. In principle, many problems of fluorescence resonance energy transfer (FRET), such as excitation of acceptors, emission overlaps between donors and acceptors, high background noise, potential toxicity, and instability, can be overcome using β-NaYF4:Yb,Er NPs as energy donors. Because the organic coating induced separation can significantly reduce the energy transfer efficiency and aqueous FRET system is difficult to be applied in devices, we demonstrate a novel NP-dye LRET system in solid state. The emission of the β-NaYF4:Yb,Er NPs at 539 nm overlaps with the absorption of the tetrametrylrhodarnine isothiocyante (TRITC), satisfying the requirement of LRET process. Since TRITC molecules are adsorbed on the β-NaYF4:Yb,Er NPs by an electrostatic interaction, the interaction distance is suitable for LRET without any further modulation. The resultant solid LRET system is ready for the further applications for devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selvin P R, Hearst J E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci USA, 1994, 91: 10024–10028

    Article  CAS  Google Scholar 

  2. Ferrand A C, Imbert D, Chauvin A S, Vandevyver C D B, Bünzli J C G. Non-cytotoxic, bifunctional EuIII and TbIII luminescent macrocyclic complexes for luminescence resonant energy-transfer experiments. Chem Eur J, 2007, 13: 8678–8687

    Article  CAS  Google Scholar 

  3. Wang L Y, Yan R X, Hao Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem, Int Ed, 2005, 44: 6054–6057

    Article  CAS  Google Scholar 

  4. Yi G S, Lu H C, Zhao S Y, Yue G, Yang W J, Chen D P, Guo L H, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett, 2004, 4: 2191–2196

    Article  CAS  Google Scholar 

  5. Lim S F, Riehn R, Ryu W S, Khanarian N, Tung C.-k, Tank D, Austin R H. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans. Nano Lett, 2006, 6: 169–174

    Article  CAS  Google Scholar 

  6. Kuningas K, Ukonaho T, Pakkila H, Rantanen T, Rosenberg J, Lovgren T, Soukka T. Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal Chem, 2006, 78, 4690–4696

    Article  CAS  Google Scholar 

  7. Zhang P, Rogelj S, Nguyen K, Wheeler D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc, 2006, 128: 12410–12411

    Article  CAS  Google Scholar 

  8. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev, 2004, 104: 139–174

    Article  CAS  Google Scholar 

  9. Miyawaki A, Sawano A, Kogure T. Lighting up cells: Labelling proteins with fluorophores. Nature Cell Biol, 2003, 5 suppl.: S1–S7

    Google Scholar 

  10. Holmes K L, Lantz L M. Protein labeling with fluorescent probes. Methods Cell Biol, 2001, 63: 185–204

    Article  CAS  Google Scholar 

  11. Banks P R, Paquette D M. Comparison of three common amine reactive fluorescent probes used for conjugation to biomolecules by capillary zone electrophoresis. Bioconjugate Chem, 1995, 6: 447–458

    Article  CAS  Google Scholar 

  12. Zhang M, Yu M X, Li F Y, Zhu M W, Li M Y, Gao Y H, Li L, Liu Z Q, Zhang J P, Zhang D Q, Yi T, Huang C H. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. J Am Chem Soc, 2007, 129: 10322–10323

    Article  CAS  Google Scholar 

  13. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013–2016

    Article  CAS  Google Scholar 

  14. Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016–2018

    Article  CAS  Google Scholar 

  15. Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298: 1759–1762

    Article  CAS  Google Scholar 

  16. Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater, 2005, 4: 435–446

    Article  CAS  Google Scholar 

  17. Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538–544

    Article  CAS  Google Scholar 

  18. Zhou D J, Piper J D, Abell C, Klenerman D, Kang D J, Ying L M. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun, 2005: 4807–4809

  19. Prat O, Lopez E, Mathis G. EuropiumIII cryptate: A fluorescent label for the detection of DNA hybrids on solid support. Anal Biochem, 1991, 195: 283–289

    Article  CAS  Google Scholar 

  20. Seveus L, Väisälä M, Syrjanen S, Sandberg M, Kuusisto A, Harju R, Salo J, Hemmilä I, Kojola H, Soini E. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry, 1992, 13: 329–338

    Article  CAS  Google Scholar 

  21. Mathis G. Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem, 39: 1953–1959

  22. Chang E, Miller J S, Sun J, Yu W W, Colvin V L, Drezek R, West J L. Protease-activated quantum dot probes. Biochem Biophys Res Commun, 2005, 334: 1317–1321

    Article  CAS  Google Scholar 

  23. Xu C, Xing B, Rao J A. A self-assembled quantum dot probe for detecting β-lactamase activity. Biochem Biophys Res Commun, 2006, 344: 931–935

    Article  CAS  Google Scholar 

  24. Lakowicz J R. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunHua Yan.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20821091 and 20671005), the National Natural Science Foundation of China & Research Grants Council (20731160001), and the Ministry of Science and Technology of China (Grant No. 2006CB601104)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Gu, J., Zhang, S. et al. Luminescence resonance energy transfer based on β-NaYF4:Yb,Er nanoparticles and TRITC dye. Sci. China Ser. B-Chem. 52, 1590–1595 (2009). https://doi.org/10.1007/s11426-009-0243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0243-4

Keywords

Navigation