Skip to main content
Log in

Fabrication of the DNA/poly(3-methylthiophene) composite film modified electrode and its application for the study on the voltammetric behavior and determination of 8-hydroxy-2′-deoxyguanosine

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A composite film of DNA/poly(3-methylthiophene) (P3MT) modified glassy carbon electrode (GCE) has been fabricated by electro-deposition method. P3MT film was first electropolymerized at the GCE and the DNA layer was then immobilized on the P3MT layer by electrochemical method. The voltammetric behavior of 8-hydroxy-2′-deoxyguanosine (8-OH-dG) at the composite film modified electrode was studied. The effects of scan rates, pH and the interference of uric acid (UA) on the voltammetric behavior and detection of 8-OH-dG were also discussed. The experimental results suggest that the electrochemical behavior of 8-OH-dG at the composite film modified electrode was greatly improved due to the combination of the advantages of P3MT and DNA. In 0.1 M pH 7.0 phosphate buffer solution (PBS), the anodic peak currents of 8-OH-dG were linear with the 8-OH-dG concentration in two intervals, viz. 0.28–4.2 µM and 4.2–19.6 µM. The detection limit of 56 nM 8-OH-dG could be estimated (S/N = 3). This proposed composite film modified electrode shows excellent reproducibility and stability. It may have the potential application for the detection of 8-OH-dG in human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boon E M, Barton J K. Charge transport in DNA. Curr Opin Struck Biol, 2002, 12: 320–329

    Article  CAS  Google Scholar 

  2. Delaney S, Barton J K. Long-range DNA charge transport. J Org Chem, 2003, 68(17): 6475–6483

    Article  CAS  Google Scholar 

  3. O’Neill M A, Barton J K. DNA charge transport: Conformationally gated hopping through stacked domains. J Am Chem Soc, 2004, 126(37): 11471–11483

    Article  Google Scholar 

  4. O’Neill M A, Barton J K. DNA-mediated charge transport requires conformational motion of the DNA bases: Elimination of charge transport in rigid glasses at 77 K. J Am Chem Soc, 2004, 126(41): 13234–13235

    Article  Google Scholar 

  5. Delaney S, Barton J K. Charge transport in DNA duplex/quadruplex conjugates. Biochem, 2003, 42(48): 14159–14165

    Article  CAS  Google Scholar 

  6. Williams T T, Odom D T, Barton J K. Variations in DNA charge transport with nucleotide composition and sequence. J Am Chem Soc, 2000, 122(37): 9048–9049

    Article  CAS  Google Scholar 

  7. Lakhno V D, Sultanov V B, Pettitt B M. Combined hopping-superexchange model of a hole transfer in DNA. Chem Phys Lett, 2004, 400(1–3): 47–53

    Article  CAS  Google Scholar 

  8. Jiang X H, Lin X Q. Atomic force microscopy of DNA self-assembled on a highly oriented pyrolytic graphite electrode surface. Electrochem Commun, 2004, 6(9): 873–879

    Article  CAS  Google Scholar 

  9. Lin X Q, Jiang X H, Lu L P. DNA nano-netting intertexture on carbon electrodes. Chin Chem Lett, 2004, 15(8): 997–1000

    CAS  Google Scholar 

  10. Lin X Q, Jiang X H, Lu L P. DNA deposition on carbon electrodes under controlled DC potentials. Biosens Bioelectron, 2005, 20(9): 1709–1717

    Article  CAS  Google Scholar 

  11. Su X D. Covalent DNA immobilization on polymer-shielded silver-coated quartz crystal microbalance using photobiotin-based UV irradiation. Biochem Biophys Res Commun, 2000, 290(3): 962–966

    Article  Google Scholar 

  12. Wang J, Jiang M. Toward genolelectronics: Nucleic acid doped conducting polymers. Langmuir, 2000, 16(5): 2269–2274

    Article  CAS  Google Scholar 

  13. Gibbs J M, Park S J, Anderson D R, Watson K J, Mirkin C A, Nguyen S B T. Polymer-DNA composites as electrochemical probes for the detection of DNA. J Am Chem Soc, 2005, 127(4): 1170–1178

    Article  CAS  Google Scholar 

  14. Lassalle N, Mailley P, Vieil E, Livache T, Roget A, Correia J P, Abrantes L M. Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA preliminary study of real time monitoring by in situ techniques. J Electroanal Chem, 2001, 509(1): 48–57

    Article  CAS  Google Scholar 

  15. Wang J, Jiang M, Fortes A, Mukherjee B. New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films. Anal Chim Acta, 1999, 402(1–2): 7–12

    Article  CAS  Google Scholar 

  16. Jiang M, Wang J. Recognition and detection of oligonucleotides in the presence of chromosomal DNA based on entrapment within conducting polymer networks. J Electroanal Chem, 2001, 500(1–2): 584–589

    Article  CAS  Google Scholar 

  17. Franceschi S, Bordeau O, Millerioux C, Perez E, Vicendo P, Rico-Lattes I, Moisand A. Highly compacted DNA-polymer complexes obtained via new polynorbornene polycationic latexes with lactobionate counterion. Langmuir, 2002, 18(5): 1743–1747

    Article  CAS  Google Scholar 

  18. Cha J, Han J I, Choi Y, Yoon D S, Oh K W, Lim G. DNA hybridization electrochemical sensor using conducting polymer. Biosens Bioelectron, 2003, 18(10): 1241–1247

    Article  CAS  Google Scholar 

  19. Minehan D S, Marx K A, Tripathy S K. Kinetics of DNA binding to electrically conducting polypyrrole films. Macromolecules, 1994, 27(3): 777–783

    Article  CAS  Google Scholar 

  20. Thompson L A, Kowalik J, Josowicz M, Janata J. Label-free DNA compositeization probe based on a conducting polymer. J Am Chem Soc, 2003, 125(2): 324–325

    Article  CAS  Google Scholar 

  21. Li T H, Jia W L, Wang H S, Liu R M. Electrochemical performance of 8-hydroxy-2′-deoxyguanosine and its detection at poly(3-methylthiophene) modified glassy carbon electrode. Biosens Bioelectron, 2007, 22(7): 1245–1250

    Article  CAS  Google Scholar 

  22. Shigenaga M A, Ames B N. Assay for 8-hydroxy-2′-deoxyguanosine: A biomarker of in vivo oxidatve DNA damage. Free Radic Biol Med, 1991, 10(3–4): 211–216

    Article  CAS  Google Scholar 

  23. Floyd R A, Watson J J, Wong P K, Altmiller D H, Rickard R C. Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radic Res Commun, 1986, 1(3): 163–172

    Article  CAS  Google Scholar 

  24. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res, 1997, 387(3): 147–163

    Article  CAS  Google Scholar 

  25. Toraason M. 8-Hydroxydeoxyguanosine as a biomarker of workplace exposures. Biomarkers, 1999, 4(1): 3–26

    Article  CAS  Google Scholar 

  26. Li C S, Wu K Y, Chang-Chien G P, Chou C C. Analysis of oxidative DNA damage 8-hydroxy-2′-deoxyguanosine as a biomarker of exposures to persistent pollutants for marine mammals. Environ Sci Technol, 2005, 39(8): 2455–2460

    Article  CAS  Google Scholar 

  27. La D K, Swenberg J A. DNA adducts: Biological markers of exposure and potential applications to risk assessment. Mutat Res, 1996, 365(1–3): 129–146

    Google Scholar 

  28. Fraga C G, Shigenaga M K, Park J W, Degan P, Ames B N. Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA, 1990, 87(12): 4533–4537

    Article  CAS  Google Scholar 

  29. Shimoda R, Nagashima M, Sakamoto M, Yamaguchi N, Hirohashi S, Yokota J, Kasai H. Increased formation of oxidative DNA damage, 8-hydroxydeoxy-guanosine, in human livers with chronic hepatitis. Cancer Res, 1994, 54: 3171–3172

    CAS  Google Scholar 

  30. Asami S, Manabe H, Miyake J, Tsurudome Y, Hirano T, Yamaguchi R, Itoh H, Kasai H. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydioxyguanisine, in a central site of the human lung. Carcinogenesis, 1997, 18(9): 1763–1766

    Article  CAS  Google Scholar 

  31. Foksinski M, Kotzbach R, Szymanski W, Olinski R. The level of typical biomarker of oxidative stress 8-hydroxy-2′-deoxyguanosine is higher in uterine myomas than in control tissues and correlates with the size of the tumor. Free Rad Biol Med, 2000, 29(7): 597–601

    Article  CAS  Google Scholar 

  32. Kuo H W, Chou S Y, Hu T W, Wu F Y, Chen D J. Urinary 8-hydroxy-2′-deoxyguanosine (8-OH-dG) and genetic polymorphisms in breast cancer patients. Mutat Res, 2007, 631(1): 62–68

    CAS  Google Scholar 

  33. Suzuki H, Inoue Y, Suzuk I S. Changes in the urinary excretion level of 8-hydroxyguanine by exposure to reactive oxygen-generating substances. Free Rad Biol Med, 1995, 18(3): 431–436

    Article  CAS  Google Scholar 

  34. Loft S, Vistisen K, Ewertz M, Tjønneland A, Overvad K, Poulsen H. Oxidative DNA damage estimated by 8-hydroxy-deoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis, 1992, 13(12): 2241–2247

    Article  CAS  Google Scholar 

  35. Wang J, Li R L. Highly stable voltammetric measurements of phenolic compounds at poly(3-methylthiophene) coated glassy carbon electrode. Anal Chem, 1989, 61(24): 2809–2811

    Article  CAS  Google Scholar 

  36. Wang H S, Huang D Q, Liu R M. Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene) modified glassy carbon electrode. J Electroanal Chem, 2004, 570(1): 83–90

    Article  CAS  Google Scholar 

  37. Lu L P, Lin X Q. Glassy carbon electrode modified with gold nanoparticles and DNA for the simultaneous determination of uric acid and norepinephrine under coexistence of ascorbic acid. Anal Sci, 2004, 20(3): 527–530

    Article  CAS  Google Scholar 

  38. Langmaier J, Samec Z, Samcová E. Electrochemical oxidation of 8-Oxo-2′-deoxyguanosine on glassy carbon, gold, platinum and Tin(IV) oxide electrodes. Electroanalysis, 2003, 15(19): 1555–1560

    Article  CAS  Google Scholar 

  39. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem, 1979, 101(1): 19–28

    Article  CAS  Google Scholar 

  40. Goyal R N, Jain N, Garg D K. Electrochemical and enzymic oxidation of guanosine and 8-hydroxyguanosine and the effects of oxidation products in mice. Bioelectrochem Bioenerge, 1997, 43(1): 105–114

    Article  CAS  Google Scholar 

  41. Bessho T, Tano K, Kasai H, Ohtsuka E, Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in human cells. J Biol Chem, 1993, 268(26): 19416–19421

    CAS  Google Scholar 

  42. Rebelo I, Piedade J A P, Oliveira A M Brett. Electrochemical determination of 8-oxoguanine in the presence of uric acid. Bioelectrochem, 2004, 63(1–2): 267–270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiSheng Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20475024 & 20775031) and the Shandong Tai-Shan Scholar Research Fund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, J., Liu, Y. et al. Fabrication of the DNA/poly(3-methylthiophene) composite film modified electrode and its application for the study on the voltammetric behavior and determination of 8-hydroxy-2′-deoxyguanosine. Sci. China Ser. B-Chem. 52, 2006–2012 (2009). https://doi.org/10.1007/s11426-009-0241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0241-6

Keywords

Navigation