Skip to main content
Log in

Synthesis and characterization of poly(pyrazolyl)borate tantalum amide complexes and their reactivities toward oxygen

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Reaction of TaCl(NMe2)4 (1) with KTp* [Tp* = tris(3,5-dimethylpyrazolyl)borohydride] yields two products: Tp*Ta(NMe2)4 (2), in which one N atom of the Tp* ligand binds to Ta, and [Tp*Ta(NMe2)4]·2KTp* (3) where three N atoms of the Tp* ligand in [Tp*Ta(NMe2)4] (2a) bind to Ta. Addition of excess 1 to 3 did not exclude KTp*. Further reaction of 2 with oxygen affords Tp*BH(NMe2) (4). TpTa(NMe2)4 (5) has been synthesized by a similar procedure through the reaction of 1 with TpK [Tp = tris(pyrazolyl)borohydride]. Reactions of 3 and 5 with oxygen were also studied. 2, 4, and 5 were characterized by NMR, EA, and single-crystal X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herzon S B, Hartwig J F. Direct, catalytic hydroaminoalkylation of unactivated olefins with N-alkyl arylamines. J Am Chem Soc, 2007, 129: 6690–6691

    Article  CAS  Google Scholar 

  2. Nugent W A, Ovenall D W, Holmes S J. Catalytic C-H activation in early transition-metal diaikyiamides and alkoxides. Organometallics, 1983, 2: 161–162

    Article  CAS  Google Scholar 

  3. Chisholm M H, Extine M W. Reactions of transition metal-nitrogen σ bonds. 3. Early transition metal N,N-dimethylcarbamates. Preparation, properties, and carbon dioxide exchange reactions. J Am Chem Soc, 1977, 99: 782–792

    Article  CAS  Google Scholar 

  4. Chisholm M H, Extine M W. Reactions of transition metal-nitrogen σ bonds. 4. Mechanistic studies of carbon dioxide insertion and carbon dioxide exchange reactions involving early transition metal dimetnylamido and N,N-dimethylcarbamato compounds. J Am Chem Soc, 1977, 99: 792–802

    Article  CAS  Google Scholar 

  5. Hellwig M, Milanov A, Barecca D, Deborde J-L, Thomas R, Winter M, Kunze U, Fischer R A, Devi A. Stabilization of amide-based complexes of niobium and tantalum using malonates as chelating ligands: Precursor chemistry and thin film deposition. Chem Mater, 2007, 19: 6077–6087

    Article  CAS  Google Scholar 

  6. Peters E S, Carmalt C J, Parkin I P, Tocher D A. Aerosol-assisted chemical vapor deposition of NbS2 and TaS2 thin films from pentakis (dimethylamido)metal complexes and tert-butylthiol. Euro J Inorg Chem, 2005, 20: 4179–4185

    Article  Google Scholar 

  7. Chen T, Xu C, Baum T H. Tantalum amide complexes for depositing tantalum-containing films, and method of making same. US Patent, 2003-684545, 2003-10-14

  8. Takai K, Oshiki T, Michigami K, Tsurugi Y. Ring-opening metathesis polymerization catalysts and manufacture of ring-opened metathesis polymers. Japanese Patent, 2007-130313, 2007-05-16

  9. Takai K, Oshiki T, Michigami K. Olefin polymerization catalysts containing transition metal compounds having pyrazolyl ligands and method for olefin polymerization therewith. Japanese Patent, 2007-73563, 2007-03-20

  10. Etienne M, Hierso J-C, Daff P J, Donnadieu B, Dahan F. Mono and dinuclear hydrotris(3,5-dimethylpyrazolyl)borato tantalum complexes. Polyhedron, 2004, 23: 379–383

    Article  CAS  Google Scholar 

  11. Schorm A, Sundermeyer J. Silylimido complexes of niobium and tantalum at the limit of π-bond saturation. Euro J Inorg Chem, 2001, 11: 2947–2955

    Article  Google Scholar 

  12. Hierso J-C, Etienne M. Alkyne[hydrotris(pyrazolyl)borato]tantalum complexes-An ethyl group is a better α-agostic donor than a methyl group. Euro J Inorg Chem, 2000, 5: 839–842

    Article  Google Scholar 

  13. Rodriguez G, Graham J P, Cotter W D, Sperry C K, Bazan G C, Bursten B E. Binding preferences of the tribenzylidenemethane ligand in high-oxidation-state tantalum complexes. J Am Chem Soc, 1998, 120: 12512–12523

    Article  CAS  Google Scholar 

  14. Mashima K, Oshiki T, Tani K. Tp*Sn(Cl)Bu2 as a convenient reagent for the preparation of hydrotris(3,5-dimethylpyrazolyl)borate complexes of niobium, tantalum, and zirconium. Organometallics, 1997, 16: 2760–2762

    Article  CAS  Google Scholar 

  15. Boncella J M, Cajigal M L, Gamble A S, Abboud K A. Synthesis and crystal structures of hydridotris(3,5-dimethylpyrazolyl)borate tantalum(V)(=N-2,6-iPr2C6H3)(X)Cl (X = Cl, BunO). Polyhedron, 1996, 15: 2071–2078

    Article  CAS  Google Scholar 

  16. Boncella J M, Cajigal M L, Abboud K A. Competition between π Donation and α-C-H agostic interactions in complexes of the type Tp′Ta(=CH-t-Bu)(X)(Y) (X = Halide; Y = Halide, NR2, OR; Tp′= Hydrotris(3,5-dimethylpyrazolyl)borate). Organometallics, 1996, 15: 1905–1912

    Article  CAS  Google Scholar 

  17. Sundermeyer J, Putterlik J, Foth M, Field J S, Ramesar N. Highervalent derivatives of the d-metal acids, 13. Homoscorpionates as tripodal anchoring ligands of chloro functionalized oxo and imido complexes of elements of group 5–7. Chem Ber, 1994, 127: 1201–1212

    Article  CAS  Google Scholar 

  18. Reger D L, Swift C A, Lebioda L. Poly(pyrazolyl)borate derivatives of chlorotrimethyltantalum(V). Synthesis, crystal structure, and stereochemically nonrigid behavior of seven-coordinate molecules. Inorg Chem, 1984, 23: 349–354

    Article  CAS  Google Scholar 

  19. Cai H, Lam W H, Yu X, Liu X, Wu Z-Z, Chen T, Lin Z, Chen X-T, You X-Z, Xue Z. Synthesis, characterization, and theoretical studies of group 4 amido hydrotris(pyrazolyl)borate complexes. Inorg Chem, 2003, 42: 3008–3015

    Article  CAS  Google Scholar 

  20. Chen S J, Cai H, Xue Z L. Crystal structure of TaCl(NMe2)4 and its reactions with amide and water. Indirect observation of an equilibrium among TaCl(NMe2)4, Ta(NMe2)5 and Ta2(μ-Cl)2(NMe2)6Cl2. Organometallics, 2009, 28: 167–171

    Article  Google Scholar 

  21. Sheldrick G M. SADABS: A program for empirical absorption correction of area detector data. Göttingen: University of Göttingen, 2000

    Google Scholar 

  22. Sheldrick G M. SHELXL-97: A program for the refinement of crystal structures. University of Göttingen, Göttingen, 1997

    Google Scholar 

  23. Trofimenko S. Scorpionates. The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press, 1999

    Google Scholar 

  24. Pettinari C. Santini, C. Polypyrazolylborate and scorpionate ligands. In: McCleverty J A, Meyer T J. eds. Comprehensive Coordination Chemistry II. Vol. 1. Oxford: Elsevier. 2004. 159–210

    Google Scholar 

  25. Chen S-J, Zhang X-H, Yu X, Qiu H, Yap G P A, Guzei I A, Lin Z, Wu Y-D, Xue Z-L. Reaction of Ta(NMe2)5 with O2: Formation of aminoxy and unusual (aminomethyl)amide oxo complexes and theoretical studies of the mechanistic pathways. J Am Chem Soc, 2007, 129: 14408–14421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZiLing Xue.

Additional information

Supported by the US National Science Foundation (CHE-051692)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Yap, G.P.A. & Xue, Z. Synthesis and characterization of poly(pyrazolyl)borate tantalum amide complexes and their reactivities toward oxygen. Sci. China Ser. B-Chem. 52, 1583–1589 (2009). https://doi.org/10.1007/s11426-009-0236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0236-3

Keywords

Navigation