Skip to main content
Log in

Fluorescence quenching of TMR by guanosine in oligonucleotides

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter- and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of K s = 52.3 M−1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Millar D P. Fluorescence studies of DNA and RNA structure and dynamics. Curr Opin Struct Biol, 1996, 6: 322–326

    Article  CAS  Google Scholar 

  2. Bonnet G, Krichevsky O, Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci, 1998, 95: 8602–8606

    Article  CAS  Google Scholar 

  3. Wei F, Chen C L, Zhai L, Zhang N, Zhao X S. Recognition of single nucleotide polyrnorphisms using scanning potential hairpin denaturation. J Am Chem Soc, 2005, 127: 5306–5307

    Article  CAS  Google Scholar 

  4. Chen C L, Wang W J, Wang Z, Wei F, Zhao X S. Influence of secondary structure on kinetics and reaction mechanism of DNA hybridization. Nucleic Acids Res, 2007, 35: 2875–2884

    Article  CAS  Google Scholar 

  5. Chen X D, Zhou Y, Qu P, Zhao X S. Base-by-base dynamics in DNA hybridization probed by fluorescence correlation spectroscopy. J Am Chem Soc, 2008, 130: 16947–16952

    Article  CAS  Google Scholar 

  6. Cardullo R A, Agrawal S, Flores C, Zamecnik P C, Wolf D E. Detection of nucleic-acid hybridization by nonradiative fluorescence resonance energy-transfer. Proc Natl Acad Sci, 1988, 85: 8790–8794

    Article  CAS  Google Scholar 

  7. Morrison L E, Halder T C, Stols L M. Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal Biochem, 1989, 183: 231–244

    Article  CAS  Google Scholar 

  8. Heid C A, Stevens J, Livak K J, Williams P M. Real time quantitative PCR. Genome Res, 1996, 6: 986–994

    Article  CAS  Google Scholar 

  9. Tyagi S, Kramer F R. Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotech, 1996, 14: 303–308

    Article  CAS  Google Scholar 

  10. Wang W J, Chen C L, Qian M X, Zhao X S. Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem, 2008, 373: 213–219

    Article  CAS  Google Scholar 

  11. Wanninger-Weiss C, Valis L, Wagenknecht H A. Pyrene-modified guanosine as fluorescent probe for DNA modulated by charge transfer. Bioorgan & Med Chem, 2008, 16: 100–106

    Article  CAS  Google Scholar 

  12. Schuttpelz M, Schoning J C, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M. Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. J Am Chem Soc, 2008, 130: 9507–9513

    Article  Google Scholar 

  13. Lilley D M J, Wilson T J. Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr Opin Chem Biol, 2000, 4: 507–517

    Article  CAS  Google Scholar 

  14. Selvin P R. The renaissance of fluorescence resonance energy transfer. Nature Struct Biol, 2000, 7: 730–734

    Article  CAS  Google Scholar 

  15. Speiser S. Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: Solution and supersonic jet studies. Chem Rev, 1996, 96: 1953–1976

    Article  CAS  Google Scholar 

  16. Lewis F D, Wu T F, Zhang Y F, Letsinger R L, Greenfield S R, Wasielewski M R. Distance-dependent electron transfer in DNA hairpins. Science, 1997, 277: 673–676

    Article  CAS  Google Scholar 

  17. Lewis F D, Letsinger R L, Wasielewski M R. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc Chem Res, 2001, 34: 159–170

    Article  CAS  Google Scholar 

  18. Meade T J, Kayyem J F. Electron-transfer through DNA-site-specific modification of duplex DNA with ruthenium donors and accepters. Angew Chem Int Ed Engl, 1995, 34: 352–354

    Article  CAS  Google Scholar 

  19. Kelley S O, Holmlin R E, Stemp E D A, Barton J K. Photoinduced electron transfer in ethidium-modified DNA duplexes: Dependence on distance and base stacking. J Am Chem Soc, 1997, 119: 9861–9870

    Article  CAS  Google Scholar 

  20. Kelley S O, Barton J K. Electron transfer between bases in double helical DNA. Science, 1999, 283: 375–381

    Article  CAS  Google Scholar 

  21. Wan C Z, Fiebig T, Kelley S O, Treadway C R, Barton J K, Zewail A H. Femtosecond dynamics of DNA-mediated electron transfer. Proc Natl Acad Sci, 1999, 96: 6014–6019

    Article  CAS  Google Scholar 

  22. Manoharan M, Tivel K L, Zhao M, Nafisi K, Netzel T L. Base-sequence dependence of emission lifetimes for DNA oligomers and duplexes covalently labeled with pyrene-relative electron-transfer quenching efficiencies of A-nucleoside, G-nucleoside, C-nucleoside, and T-nucleoside toward pyrene. J Phys Chem, 1995, 99: 17461–17472

    Article  CAS  Google Scholar 

  23. Seidel C A M, Schulz A, Sauer M H M. Nucleobase-specific quenching of fluorescent dyes.1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem, 1996, 100: 5541–5553

    Article  CAS  Google Scholar 

  24. Edman L, Mets U, Rigler R. Conformational transitions monitored for single molecules in solution. Proc Natl Acad Sci, 1996, 93: 6710–6715

    Article  CAS  Google Scholar 

  25. Eggeling C, Fries J R, Brand L, Gunther R, Seidel C A M. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci, 1998, 95: 1556–1561

    Article  CAS  Google Scholar 

  26. Nazarenko I, Lowe B, Darfler M, Ikonomi P, Schuster D, Rashtchian A. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res, 2002, 30: e37

    Article  Google Scholar 

  27. Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res, 2002, 30: 2089–2095

    Article  CAS  Google Scholar 

  28. Kurata S, Kanagawa T, Yamada K, Torimura M, Yokomaku T, Kamagata Y, Kurane R. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer. Nucleic Acids Res, 2001, 29: e34

    Article  CAS  Google Scholar 

  29. Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R. Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci, 2001, 17: 155–160

    Article  CAS  Google Scholar 

  30. Heinlein T, Knemeyer J P, Piestert O, Sauer M. Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J Phys Chem B 2003, 107: 7957–7964

    Article  CAS  Google Scholar 

  31. Wang W J, Chen C L, Qian M X, Zhao X S. Aptamer biosensor for protein detection based on guanine-quenching. Sens Actuator B-Chem, 2008, 129: 211–217

    Article  Google Scholar 

  32. Ehrenber M, Rigler R. Polarized fluorescence and rotational brownian motion. Chem Phys Lett, 1972, 14: 539–544

    Article  Google Scholar 

  33. Ehrenber M, Rigler R. Rotational Brownian-motion and fluorescence intensity fluctuations. Chem Phys, 1974, 4: 390–401

    Article  Google Scholar 

  34. Elson E L, Magde D. Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers, 1974, 13: 1–27

    Article  CAS  Google Scholar 

  35. Magde D, Elson E L, Webb W W. Fluorescence correlation spectroscopy. 2. Experimental realization. Biopolymers, 1974, 13: 29–61

    Article  CAS  Google Scholar 

  36. Krichevsky O, Bonnet G. Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys, 2002, 65: 251–297

    Article  CAS  Google Scholar 

  37. Lakowicz J R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1989

    Google Scholar 

  38. Kim J, Doose S, Neuweiler H, Sauer M. The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res, 2006, 34: 2516–2527

    Article  CAS  Google Scholar 

  39. Wang X J, Nau W M. Kinetics of end-to-end collision in short single-stranded nucleic acids. J Am Chem Soc, 2004, 126: 808–813

    Article  CAS  Google Scholar 

  40. Hyeon C, Thirumalai D. Kinetics of interior loop formation in semiflexible chains. J Chem Phys, 2006, 124: 104905

    Article  Google Scholar 

  41. Doucet D, Roitberg A, Hagen S J. Kinetics of internal-loop formation in polypeptide chains: A simulation study. Biophys J, 2007, 92: 2281–2289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinSheng Zhao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20673002, 20733001) and the 973 Project (2006CB910304)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, P., Chen, X., Zhou, X. et al. Fluorescence quenching of TMR by guanosine in oligonucleotides. Sci. China Ser. B-Chem. 52, 1653–1659 (2009). https://doi.org/10.1007/s11426-009-0235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0235-4

Keywords

Navigation