Skip to main content
Log in

Generation and α-hydroxyalkylation of a novel 3-piperidinol N-α-carbanion intermediate

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The (S)-sulfide 6 has been synthesized as a synthetic equivalent of novel 3-piperidinol N-α-carbanion B via deprotonation and lithium naphthanelide (LN)-mediated reductive lithiation. The reaction of the 3-piperidinol N-α-carbanion intermediate B with carbonyl compounds gave, besides some reduced product 2a, the desired α-hydroxyalkylation products 12–17 with excellent 2,3-diastereoselectivity. The reductive α-hydroxyalkylation with unsymmetric carbonyl compounds led to only 50:50 to 77:23 diastereoselectivities at the C-1′ carbinol center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubiralta M, Giralt E, Diez A. Piperidines Structure, Preparation, Reactivity, and Synthetic Applications of Piperidines and Its Derivatives. Amsterdam: Elsevier, 1991

    Google Scholar 

  2. Schneider M. “Pyridine And Piperidine Alkaloids: An Update” in Alkaloids: Chemical and Biochemical Perspectives. Vol. 10 (ed, Pelletier S W). Oxford: Elsevier Science, 1996, 155–299

    Chapter  Google Scholar 

  3. Watson A A, Fleet G W J, Asano N, Molyneux R J, Nash R J. Polyhydroxylated alkaloids-natural occurrence and therapeutic applications. Phytochemistry, 2001, 56(3): 265–295

    Article  CAS  Google Scholar 

  4. Afarinkia K, Bahar A. Recent advances in the chemistry of azapyranose sugars. Tetrahedron: Asymmetry, 2005, 16(7): 1239–1287

    Article  CAS  Google Scholar 

  5. Ciufolini M A, Hermann C W, Dong Q, Shimizu T, Swaminathan S, Xi N. Nitrogen heterocycles from furans: The aza-achmatowicz reaction. Synlett, 1998: 105–114

  6. Zhou W S, Lu Z H, Xu Y M, Liao L X, Wang Z M. Synthesis of optically active α-furfuryl amine derivatives and application to the asymmetric syntheses. Tetrahedron, 1999, 55(41): 11959–11983

    Article  CAS  Google Scholar 

  7. Laschat S, Dickner T. Stereoselective synthesis of piperidines. Synthesis, 2000: 1781–1813

  8. Toyooka N, Nemoto H. Application of chiral building blocks to the synthesis of drugs. Drugs Fut, 2002, 27(2): 143–158

    Article  CAS  Google Scholar 

  9. Weintraub P M, Sabol J S, Kane J M, Borcherding D R. Recent advances in the synthesis of piperidones and piperidines. Tetrahedron, 2003, 59(17): 2953–2989

    Article  CAS  Google Scholar 

  10. Enders D, Nolte B, Runsink J. Asymmetric synthesis of 2-substituted piperidin-3-ols. Tetrahedron: Asymmetry, 2002, 13(6): 587–593

    Article  CAS  Google Scholar 

  11. Winkler J D, Hershberger P M, Springer J P. A stereoselective synthesis of the azaspiboundecane ring system of (−)-histrionicotoxin from (+)-glutamic acid. Tetrahedron Lett, 1986, 27(43): 5177–5180

    Article  CAS  Google Scholar 

  12. Kotsuki H, Kusumi T, Inoue M, Ushio Y, Ochi M. Synthesis of solenopsin B via stereoselective reduction of Bicyclic N,O-ketals. Tetrahedron Lett, 1991, 32(33): 4159–4162

    Article  CAS  Google Scholar 

  13. Ko K Y, Lee K I, Kim W L. Synthesis of 5-oxo-L-pipecolic acid derivatives by rhodium(II) acetate catalyzed cyclization of diazoketones. Tetrahedron Lett, 1992, 33(44): 6651–6652

    Article  CAS  Google Scholar 

  14. Kadota I, Kawada M, Muramatsu Y, Yamamoto Y. Total synthesis of (+)-desoxoprosopinine via the intramolecular reaction of γ-aminoallylstannane. Tetrahedron Lett, 1997, 38(42): 7469–7470

    Article  CAS  Google Scholar 

  15. Ducrot P, Thal C. A short diastereoselective synthesis of 1-aminoindolo-[2,3-a]quinolizidines via an N-acyliminium ion cyclisation. Tetrahedron Lett. 1999, 40(51): 9037–9040

    Article  CAS  Google Scholar 

  16. Kadlečíková K, Dalla V, Marchalín Š, Decroix B, Baran P. Diastereoselective synthesis of new polyhydroxylated indolizidines from (l)-glutamic acid. Tetrahedron, 2005, 61(20): 4743–4754

    Article  Google Scholar 

  17. Huang P Q, Liu L X, Wei B G, Ruan Y P. Asymmetric synthesis of (+)-L-733, 060 and (+)-CP-99, 994 based on a new chiral 3-piperidinol synthon. Org Lett, 2003, 5(11): 1927–1929

    Article  CAS  Google Scholar 

  18. Huang P Q, Wei B G, Ruan Y P. Asymmetric synthesis of antimalarial alkaloids (+)-febrifugine and (+)-isofebrifugine. Synlett, 2003: 1663–1667

  19. Liu L X, Ruan Y P, Guo Z Q, Huang P Q. A general approach to (5S,6R)-6-alkyl-5-benzyloxy-2-piperidinones: Application to the asymmetric syntheses of neurokinin substance P receptor antagonist (−)-L-733,061 and (−)-deoxocassine. J Org Chem, 2004, 69(18): 6001–6009

    Article  CAS  Google Scholar 

  20. Ruan Y P, Wei B G, Xu X Q, Liu G, Yu D S, Liu L X, Huang P Q. Detailed studies on the enantioselective synthesis and HPLC enantioseparation of N-protected 3-hydroxyglutarimides. Chirality, 2005, 17(9): 595–599

    Article  CAS  Google Scholar 

  21. Wei B G, Chen J, Huang P Q. A new approach for the asymmetric syntheses of 2-epi-deoxoprosopinine and azasugar derivatives. Tetrahedron, 2006, 62(1): 190–198

    Article  CAS  Google Scholar 

  22. Feng C G, Chen J, Ye J L, RuanY P, Zheng X, Huang P Q. Syntheses of enantio-enriched chiral building blocks from L-glutamic acid. Tetrahedron, 2006, 62(31): 7459–7465

    Article  CAS  Google Scholar 

  23. Liu G, Meng J, Feng C G, Huang P Q. Asymmetric syntheses of (−)-epi-pseudoconhydrine and (−)-5-hydroxysedamine based on a cis-diastereoselective 1,4-asymmetric induction. Tetrahedron: Asymmetry, 2008, 19(11): 1297–1303

    Article  CAS  Google Scholar 

  24. Liu L X, Peng Q L, Huang P Q. A new approach for the asymmetric synthesis of (2S,3S)-3-hydroxypipecolic acid. Tetrahedron: Asymmetry, 2008, 19(10): 1200–1203

    Article  CAS  Google Scholar 

  25. Zaugg H E. α-Amidoalkylation at carbon: Recent advances — (Part I and Part II). Synthesis, 1984: 85–110 and 181–212

  26. Speckamp W N, Hiemstra H. Intramolecular reactions of N-acyliminium intermediates. Tetrahedron, 1985, 41(20): 4367–4416

    Article  CAS  Google Scholar 

  27. Speckamp W N, Moolenaar M J. New developments in the chemistry of N-acyliminium ions and related intermediates. Tetrahedron, 2000, 56(24): 3817–3856

    Article  CAS  Google Scholar 

  28. Bur S K, Martin S F. Vinylogous mannich reactions: Selectivity and synthetic utility. Tetrahedron, 2001, 57(16): 3221–3242

    Article  CAS  Google Scholar 

  29. Marson C M. Synthesis via N-acyliminium cyclisations of N-heterocyclic ring systems related to alkaloids. Arkivoc, 2001, part I: 1–16 (at www.arkat-usa.org)

  30. Maryanoff B E, Zhang H C, Cohen J H, Turchi I J, Maryanoff C A. Cyclizations of N-acyliminium ions. Chem. Rev, 2004, 104(3): 1431–1628

    Article  CAS  Google Scholar 

  31. Royer J, Bonin M, Micouin L. Chiral heterocycles by iminium ion cyclization. Chem Rev, 2004, 104(5): 2311–2352

    Article  CAS  Google Scholar 

  32. Yazici A, Pyne S G. Intermolecular addition reactions of N-acyliminium ions (Part I). Synthesis, 2009: 339–368

  33. ibid. Intermolecular addition reactions of N-acyliminium ions (Part II). Synthesis, 2009: 513–541.

  34. Cohen T, Bhupathy M. Organoalkali compounds by radical anion induced reductive metalation of phenyl thioethers. Acc Chem Res, 1989, 22(4): 152–161

    Article  CAS  Google Scholar 

  35. Gant T G, Meyers A I. The chemistry of 2-oxazolines (1985-present). Tetrahedron, 1994, 50(8): 2297–2360

    Article  CAS  Google Scholar 

  36. Beak P, Basu A, Gallagher D J, Park Y S, Thayumanavan S. Regioselective, diastereoselective, and enantioselective lithiation-substitution sequences: reaction pathways and synthetic applications. Acc Chem Res, 1996, 29(11): 552–560

    Article  CAS  Google Scholar 

  37. Yus M. Arene-catalysed lithiation reactions. Chem Soc Rev, 1996, 25(3): 155–161

    Article  CAS  Google Scholar 

  38. Cohen T. The production of cyclopropanes from organosulfur compounds and a novel cyclopropane ring expansion. Pure & Appl Chem, 1996, 68(4): 913–917

    Article  CAS  Google Scholar 

  39. Gawley R E. Chiral, nonracemic, 2-lithiopiperidines and -pyrrolidines: Remarkably stable “carbanions” with considerable synthetic potential. Curr Org Chem, 1997, 1(1): 71–94

    CAS  Google Scholar 

  40. Kessar S V, Singh P. Lewis acid complexation of tertiary amines and related compounds: A strategy for α-deprotonation and stereocontrol. Chem Rev, 1997, 97(3): 721–738

    Article  CAS  Google Scholar 

  41. Katritzky A, Qi M. The generation and reactions of non-stabilized α-aminocarbanions. Tetrahedron, 1998, 54(12): 2647–2668

    Article  CAS  Google Scholar 

  42. Husson H P, Royer J. Chiral non-racemic N-cyanomethyloxazolidines: the pivotal system of the CN(R,S) method. Chem Soc Rev, 1999, 28(6): 383–394

    Article  CAS  Google Scholar 

  43. Rassu G, Zanardi F, Battistini L, Casiraghi G. The synthetic utility of furan-, pyrrole- and thiophene-based 2-silyloxy dienes. Chem Soc Rev, 2000, 29(2): 109–118

    Article  CAS  Google Scholar 

  44. Beak P, Lee W K. Alpha.-lithioamine synthetic equivalents: syntheses of diastereoisomers from Boc derivatives of cyclic amines. J Org Chem, 1993, 58(5): 1109–1117

    Article  CAS  Google Scholar 

  45. Bartels M, Zapico J, Gallagher T. C(6)-alkylation of 3-hydroxypiperidine via reductive and homolytic cleavage of N,S-acetals. Synlett, 2004: 2636–2638

  46. Chen W, Zheng X, Ruan Y P, Huang P Q. Facile syntheses of three ahp-type building blocks with complementary reactivities. Heterocycles, 2009, 79: 681–693

    Article  CAS  Google Scholar 

  47. Sunose M, Peakman T M, Charmant J P H, Gallagher T, Macdonald S J F. Regioselective directed lithiation of N-Boc 3-hydroxypyrrolidine synthesis of 2-substituted 4-hydroxypyrrolidines. Chem Commun, 1998, (16): 1723–1724

  48. Pandey G, Chakrabarti D. Corrigendum. Tetrahedron Lett, 1998, 39(46): 8371

    Article  CAS  Google Scholar 

  49. Williams R M, Cao J, Tsujishima H. Asymmetric, stereocontrolled total synthesis of paraherquamide A. Angew Chem Int Ed. 2000, 39(14): 2540–2544

    Article  CAS  Google Scholar 

  50. Huang P Q, Zheng X, Wang S L, Ye J L, Jin L R, Chen Z. A new approach to (S)-4-hydroxy-2-pyrrolidinone and its 3-substituted analogues. Tetrahedron: Asymmetry, 1999, 10(17): 3309–3317

    Article  CAS  Google Scholar 

  51. Huang P Q, Wu T J, Ruan Y P. A flexible approach to (S)-5-alkyl tetramic acid derivatives: Application to the asymmetric synthesis of (+)-preussin and protected (3S,4S)-AHPPA. Org Lett, 2003, 5(23): 4341–4344

    Article  CAS  Google Scholar 

  52. Huang P Q, Deng J. A flexible approach for the asymmetric synthesis of N -protected (R)-5-alkyl tetramates and (R)-5-alkyl tetramic acid derivatives. Synlett, 2004: 247–250

  53. Wu T J, Huang P Q. A concise approach to (+)-1-epi-castanospermine. Tetrahedron Lett, 2008, 49(2): 383–386

    Article  CAS  Google Scholar 

  54. Zhou X, Liu W J, Ye J L, Huang P Q. Complementary stereocontrolled approaches to 2-pyrrolidinones bearing a vicinal amino diol subunit with three continuous chiral centers: A formal asymmetric synthesis of (−)-detoxinine. J Org Chem, 2007, 72(23): 8904–8909

    Article  CAS  Google Scholar 

  55. Huang P Q. Asymmetric synthesis of hydroxylated pyrrolidines, piperidines and related bioactive compounds: From N-acyliminium chemistry to N-alpha-carbanion chemistry. Synlett, 2006: 1133–1149

  56. Huang P Q, Chen G, Zheng X. A new synthesis of alkaloid (S)-3-hydroxypiperidin-2-one and its O-TBS protected derivative. J Heterocyclic Chem, 2007, 44(2): 499–501

    Article  CAS  Google Scholar 

  57. Reddy M S, Narender M, Rao K R. A new asymmetric synthetic route to substituted piperidines. Tetrahedron, 2007, 63(2): 331–336

    Article  CAS  Google Scholar 

  58. Amat M, Llor N, Huguet M, Molins E, Espinosa E, Bosch J. Unprecedented oxidation of a phenylglycinol-derived 2-pyridone: enantioselective synthesis of polyhydroxypiperidines. Org Lett, 2001, 3(21): 3257–3260

    Article  CAS  Google Scholar 

  59. Erkkila A, Majander I, Pihko P M. Iminium catalysis. Chem Rev, 2007, 107(12): 5416–5470

    Article  Google Scholar 

  60. Mukherjee S, Yang J W, Hoffmann S, List B. Asymmetric enamine catalysis. Chem Rev, 2007, 107(12): 5471–5569

    Article  CAS  Google Scholar 

  61. Pellissier H. Asymmetric organocatalysis. Tetrahedron, 2007, 63(38): 9267–9331

    Article  CAS  Google Scholar 

  62. Notz W, Tanaka F, Barbas C F, III Enamine-based organocatalysis with proline and diamines: The development of direct catalytic asymmetric aldol, mannich, michael, and diels-alder reactions. Acc Chem Res, 2004, 37(8): 580–591

    Article  CAS  Google Scholar 

  63. Dalko P I, Moisan L. In the golden age of organocatalysis. Angew Chem Int Ed, 2004, 43(39): 5138–5175

    Article  CAS  Google Scholar 

  64. List B. Asymmetric aminocatalysis. Synlett, 2001: 1675–1686

  65. Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Application in Asymmetric Synthesis. Weinheim: Wiley-VCH, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zheng or YuanPing Ruan.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20832005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Chen, G., Ruan, Y. et al. Generation and α-hydroxyalkylation of a novel 3-piperidinol N-α-carbanion intermediate. Sci. China Ser. B-Chem. 52, 1631–1638 (2009). https://doi.org/10.1007/s11426-009-0229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0229-2

Keywords

Navigation