Skip to main content
Log in

Polarized neutron diffraction and its application to spin density studies

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Spin density distributions in molecular compounds containing unpaired electrons have been studied by polarized neutron diffraction (PND). The spin density distributions provide a unique perspective of the magnetic properties of the compounds. The background and fundamentals of polarized neutron diffraction are summarized in this review, followed by examples of applications in inorganic and organic chemistry. Spin densities in several compounds that are obtained by polarized neutron diffraction are highlighted. Spin densities in single molecular magnet [Fe8O2(OH)12(tacn)6]8+ and cyano-bridged K2[Mn(H2O)2]3[Mo(CN)7]2·6H2O demonstrate how to obtain magnetic interaction in the complexes by PND. PND studies of Ru(acac)3, containing one single unpaired electron, show small spin densities in this complex. Finally the use of PND in studying nitronyl nitroxide radicals is given. Our goal in this review is to illustrate how PND functions and how it serves as a sensitive tool in directly probing spin density in molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becini A, Gatteschi D. EPR of Exchange Coupled Systems. Berlin: Springer-Verlag, 1990

    Google Scholar 

  2. Willett R D, Gatteschi D, Kahn O. Magneto-Structural Correlations in Exchange Coupled Systems. Dordrecht: Reidel, 1985. 207–240

    Google Scholar 

  3. Gatteschi D J. Physical techniques for the investigation of molecular magnetic clusters. J Phys Chem B, 2000, 104: 9780–9787

    Article  CAS  Google Scholar 

  4. Sharp R R, Paramagnetic NMR. Nucl Mag Res, 2005, 34: 553–596

    Article  CAS  Google Scholar 

  5. Bertini I, Luchinat C, Parigi G, Pierattelli R. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans, 2008, 3782–3790

  6. Hoffman B M. ENDOR of metalloenzymes. Acc Chem Res, 2003, 36: 522–529

    Article  CAS  Google Scholar 

  7. Chen D F, Liu Y T, Gou C, Ye C T. Development of neutron scattering on 60 MW research reactor in CIAE. Physica B, 2006, 385–386: 966–967

    Article  Google Scholar 

  8. Wei J, Chen H, Chen Y, Chen Y, Chi Y, Deng C, Dong H, Dong L, Fang S, Feng J, Fu S, He L, He W, Heng Y, Huang K, Jia X, Kang W, Kong X, Li J, Liang T, Lin G, Liu Z, Ouyang H, Qin Q, Qu H, Shi C, Sun H, Tang J, Tao J, Wang C, Wang F, Wang D, Wang Q, Wang S, Wei T, Xi J, Xu T, Xu Z, Yin W, Yin X, Zhang J, Zhang Z, Zhang Z, Zhou M, Zhu T. China Spallation Neutron Source: Design, R&D, and outlook. Nucl Instrum Meth A, 2009, 600: 10–13

    Article  CAS  Google Scholar 

  9. Wilson C C. Single Crystal Neutron Diffraction from Molecular Materials. Singapore: World Scientific, 2000

    Google Scholar 

  10. Larese J Z. Neutron Scattering. In: Scott R A, Lukehart C M, eds. Applications of Physical Methods to Inorganic and Bioinorganic Chemistry. Chichester, UK: Wiley, 2007. 291–313

    Google Scholar 

  11. Long G J. Neutron Diffraction. In: McCleverty J A, Meyer T J, eds. Comprehensive Coordination Chemistry II. Amsterdam: Elsevier, 2003. 83–90

    Google Scholar 

  12. Dianoux A-J, Lander G. Neutron Data Booklet, 2nd ed. Philadelphia: Old City Publishing, Philadelphia, PA, USA, 2003

    Google Scholar 

  13. McIntyre G J, Lemee-Cailleau M H, Wilkinson C. High-speed neutron Laue diffraction comes of age. Physica B, 2006, 385–386: 1055–1058

    Article  Google Scholar 

  14. Gukasov A, Goujon A, Meuriot J-L, Person C, Exil G, Koskas G. Super-6T2, a new position-sensitive detector polarized neutron diffractometer. Physica B, 2007, 397: 131–134

    Article  CAS  Google Scholar 

  15. West C D, Farrar M B. Upgrading scientific capabilities at the high-flux isotope reactor. Physica B, 1997, 241–243: 46–47

    Article  Google Scholar 

  16. Mason T E, Abernathy D, Anderson I, Ankner J, Egami T, Ehlers G, Ekkebus A, Granroth G, Hagen M, Herwig K, Hodges J, Hoffmann C, Horak C, Horton L, Klose F, Larese J, Mesecar A, Myles D, Neuefeind J, Ohl M, Tulk C, Wang X L, Zhao J. The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research. Physica B, 2006, 385–386: 955–960

    Article  Google Scholar 

  17. Meigo S-I, Ohi M, Kai T, Ono T, Ikezaki K, Haraguchi T, Fujimori H, Sakamoto S. Beam commissioning for neutron and muon facility at J-PARC. Nucl Instrum Meth A, 2009, 600: 41–43

    Article  CAS  Google Scholar 

  18. Kennedy, S J. Construction of the neutron beam facility at Australia’s OPAL research reactor. Physica B, 2006, 385–386: 949–954

    Article  Google Scholar 

  19. Schultz A J. Single-crystal time-of-flight neutron diffraction. Trans Am Cryst Assoc, 1993, 29: 29–41

    CAS  Google Scholar 

  20. Nathans R, Pigott M T, Shull C G. The magnetic structure of Fe3Al. J Phys Chem Solids, 1958, 6: 38–42

    Article  CAS  Google Scholar 

  21. Lelievre-Berna E, Bourgeat-Lami E, Gibert Y, Kernavanois N, Locatelli J, Mary T, Pastrello G, Petukhov A, Pujol S, Rouques R, Thomas F, Thomas M, Tasset F. ILL polarized hot-neutron beam facility D3. Physica B, 2005, 356: 141–145

    Article  CAS  Google Scholar 

  22. Courtois P, Hamelin B, Andersen K H. Production of copper and Heusler alloy Cu2MnAl mosaic single crystals for neutron monochromators. Nucl Instrum Meth A, 2004, 529: 157–161

    Article  CAS  Google Scholar 

  23. Jones G L, Dias F, Collett B, Chen W C, Gentile T R, Piccoli P M B, Miller M E, Schultz A J, Yan H, Tong X, Snow W M, Lee W T, Hoffmann C, Thomison J. Test of a continuously polarized 3He neutron spin filter with NMR-based polarization inversion on a single-crystal diffractometer. Physica B, 2006, 385–386: 1131–1133

    Article  Google Scholar 

  24. Hussey D S, Rich D R, Belov A S, Tong X, Yang H, Bailey C, Keith C D, Hartfield J, Hall G D R, Black T C, Snow W M, Gentile T R, Chen W C, Jones G L, Wildman E. Polarized 3He gas compression system using metastability-exchange optical pumping. Rev Sci Instrum 2005, 76: 053503

    Article  Google Scholar 

  25. Cicognani G, ed. The Yellow Book 2008, Institut Laue-Langevin, France, 2008. 34–35

    Google Scholar 

  26. Spaldin N A. Magnetic Materials. Cambridge: University Press, 2003, 46

    Google Scholar 

  27. Shirane G, Shapiro S M, Transquada, J M. Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques. Cambridge, UK: Cambridge University Press, 2002

    Google Scholar 

  28. Schweizer J. Historical account of polarized neutrons in Grenoble. Physica B, 1999, 267–268: 9–20

    Article  Google Scholar 

  29. Shull C G. Neutron diffraction. Adv Mater Res, 1967, 1: 29–50

    CAS  Google Scholar 

  30. Reynolds P A, Cable J W, Sobolev A N, Figgis B N. Structure, covalence and spin polarization in tris(acetylacetonato)ruthenium(III) studied by X-ray and polarized neutron diffraction. J Chem Soc Dalton Trans, 1998, 559–569

  31. Press Release for the Nobel Prize in Physics 1994, Nobel Foundation, 1994

  32. Nathans R, Shull C G, Shirane G, Andresen A. The use of polarized neutrons in determining the magnetic scattering by iron and nickel. Phys Chem Solids, 1959, 10: 138–146

    Article  CAS  Google Scholar 

  33. Kahn O. Chemistry and physics of supramolecular magnetic materials. Acc Chem Res, 2000, 33: 647–657

    Article  CAS  Google Scholar 

  34. Brown P J, Forsyth J B. The determination of beam polarization and flipping efficiency in polarized neutron diffractometry. Brit J Appl Phys, 1964, 15: 1529–1533

    Article  CAS  Google Scholar 

  35. Brown P J, Forsyth J B, Mason R. Magnetization densities and electronic states in crystals. Proc. R. Soc. B, 1980, 290: 481–495

    CAS  Google Scholar 

  36. Schweizer J, Ressouche E. Neutron Scattering and Spin Densities in Free Radicals. In: Miller J S, Drillon M, eds. Magnetism Molecules to Materials. New York: Wiley-VCH, 2001. 325–355

    Chapter  Google Scholar 

  37. Ressouche E. Investigating molecular magnetism with polarized neutrons. Physica B, 1999, 267–268: 27–36

    Article  Google Scholar 

  38. Gillon B. Spin Distributions in Molecular Systems with Interacting Transition Metal Ions. In: Miller J S, Drillon M, eds. Magnetism Molecules to Materials. New York: Wiley-VCH, 2001. 357–378

    Chapter  Google Scholar 

  39. Barnes L A, Chandler G S, Figgis B N. Orbital magnetization in tetrachlorocobaltate(2−) (CoCl 2−4 ) and phthalocyaninatocobalt from polarized neutron diffraction. Mol Phys, 1989, 68: 711–735

    Article  CAS  Google Scholar 

  40. Matthewman J C, Thompson P, Brown P J. The Cambridge crystallography subroutine library. J Appl Cryst, 1982, 15: 167–173

    Article  CAS  Google Scholar 

  41. Zheludev A, Bonnet, M, Delley B, Grand A, Ressouche E, Rey P, Subra R, Schweizer J. Spin density in a nitronyl nitroxide free radical. Polarized neutron diffraction investigation and ab initio calculations. J Am Chem Soc, 1994, 116: 2019–2027

    Article  CAS  Google Scholar 

  42. Papoular R J, Gillon B. Maximum entropy reconstruction of spin density maps in crystals from polarized neutron diffraction data. Europhys Lett, 1990, 13: 429–434

    Article  CAS  Google Scholar 

  43. Koritsanszky T S, Coppens P. Chemical applications of X-ray charge-density analysis. Chem Rev, 2001, 101: 1583–1627

    Article  CAS  Google Scholar 

  44. Volkov A, Macchi P, Farrugia L J, Gatti C, Mallinson P, Richter T, Koritsanszky T. XD-2006. A Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental and Theoretical Structure Factors. New York: Buffalo, 2006

    Google Scholar 

  45. Maruani J. Molecules in Physics, Chemistry and Biology. Dordrecht: Kluwer Academic Publisher, 1989. 111–147

    Google Scholar 

  46. Hong C S, Do Y. Canted ferromagnetism in a NiII chain with a single end-to-end azido bridge. Angew Chem Int Ed, 1999, 38: 193–195

    Article  CAS  Google Scholar 

  47. Gillon B, Sangregorio C, Caneschi A, Gatteschi D, Sessoli R, Ressouche E, Pontillon Y. Experimental spin density in the high spin ground state of the Fe8pcl cluster. Inorg Chim Acta, 2007, 360: 3802–3806

    Article  CAS  Google Scholar 

  48. Pontillon Y, Caneschi A, Gatteschi D, Sessoli R, Ressouche E, Schweizer J, Lelievere-Berna E. Magnetization density in an iron(III) magnetic cluster. A polarized neutron investigation. J Am Chem Soc, 1999, 121: 5342–5343

    Article  CAS  Google Scholar 

  49. Gillon B, Goujon A, Willemin S, Larionova J, Desplanches C, Ruiz E, Andre G, Stride J. A, Guerin C. Neutron diffraction and theoretical DFT studies of two dimensional molecular-based magnet K2[Mn-(H2O)2]3[Mo(CN)7]2·6H2O. Inorg Chem, 2007, 46: 1090–1099

    Article  CAS  Google Scholar 

  50. Larionova J, Kahn O, Gohlen S, Ouahab L, Clérac R. Structure, ferromagnetic ordering, anisotropy, and spin reorientation for the two-dimensional cyano-bridged bimetallic compound K2Mn3(H2O)6-[Mo(CN)7]2·6H2O. J Am Chem Soc, 1999, 121: 3349–3356

    Article  CAS  Google Scholar 

  51. Figgis B N, Reynolds P A, Murray K S, Moubaraki B. The ground state in tris(acetylacetonato)ruthenium(III) from low-temperature single-crystal magnetic properties. Aust J Chem, 1998, 51: 229–234

    Article  CAS  Google Scholar 

  52. Jarrett H S. Paramagnetic resonance in trivalent transition metal complexes. J Chem Phys, 1957, 27: 1298–1304

    Article  CAS  Google Scholar 

  53. DeSimone R E. Electron paramagnetic resonance studies of low-spin d5 complexes. Trisbidentate complexes of iron(III), ruthenium(III), and osmium(III) with sulfur-donor ligands. J Am Chem Soc, 1973, 95: 6238–6244

    Article  CAS  Google Scholar 

  54. Doddrell D M, Gregson A K. Carbon-13 NMR studies of some paramagnetic transition-metal acetylacetonates. Linewidth consideration. Chem Phys Lett, 1974, 29: 512–515

    Article  CAS  Google Scholar 

  55. Waysbort D. The contributions of metal and ligand spin densities to the ligand dipolar relaxation in paramagnetic complexes. Chem Phys Chem, 1978, 82: 907–909

    Article  CAS  Google Scholar 

  56. Doddrell D M, Pegg D T, Bendall M R, Gregson A K. Electron and nuclear spin relaxation in S = 1/2 paramagnetic transition-metal complexes. Aust J Chem, 1977, 30: 1635–1643

    CAS  Google Scholar 

  57. Doddrell D M, Pegg D T, Bendall M R, Gottlieb H P W, Gregson A K, Anker M. Carbon-13 spin-relaxation times in some paramagnetic transition-metal acetylacetonate complexes. Importance of ligand-centered relaxation. Chem Phys Lett, 1976, 39: 65–68

    Article  CAS  Google Scholar 

  58. Eaton D R. The nuclear magnetic resonance of some paramagnetic transition metal acetylacetonates. J Am Chem Soc, 1965, 87: 3097–3102

    Article  CAS  Google Scholar 

  59. Doddrell D M, Pegg D T, Bendall M R, Healy P C, Gregson A K. Temperature dependence of proton spin-lattice relaxation times in some paramagnetic transition metal acetylacetonate complexes. The possible influence of the Jahn-Teller effect on electron spin relaxation. J Am Chem Soc, 1977, 99: 1281–1282

    Article  CAS  Google Scholar 

  60. Figgis B N, Reynolds P A, Cable J W. Extreme covalence in the technetium-chlorine bond from polarized neutron diffraction. J Chem Phys, 1993, 98: 7743–7745

    Article  CAS  Google Scholar 

  61. Reynolds P A, Figgis B N, Forsyth J B, Tassel F. Covalence and spin polarization in tetraphenylarsonium tetrachloronitridotechnetate(VI) studied by polarized neutron diffraction. J Chem Soc Dalton Trans, 1997, 1447–1453

  62. Best S P, Figgis B N, Forsyth J B, Reynolds P A, Tregenna-Piggot P L W. Spin distribution and bonding in [Mo(OD2)6]3+. Inorg Chem, 1995, 34: 4605–4610

    Article  CAS  Google Scholar 

  63. Figgis B N, Reynolds P A, Williams G A. Spin density and bonding in the CoCl 2−4 ion in Cs3CoCl5. Part 2. Valence electron distribution in the CoCl 2−4 ion. J Chem Soc Dalton Trans, 1980, 2339–2347

  64. Guerra C F. Methods and Techniques in Computational Chemistry. Calgliari: STEF. 1995

    Google Scholar 

  65. Baerends E J, Ellis D E, Ros P. Self-consistent molecular Hartreeock-Slater calculations. I. Computational procedure. Chem Phys, 1973, 2: 41–51

    Article  CAS  Google Scholar 

  66. Te Velde G, Baerends E J. Numerical integration for polyatomic systems. J Comput Phys, 1992, 99: 84–98

    Article  CAS  Google Scholar 

  67. Pontillon Y, Ressouche E, Romero F, Schweizer J, Ziessel R. Spin density in the free radical NitPy(C/C-H). Physica B, 1997, 234–36: 788–789

    Article  Google Scholar 

  68. Brown P J, Capiomont A, Gillon B, Schweizer J. Spin densities in free radicals. J Magn Magn Mater, 1979, 14: 289–294

    Article  CAS  Google Scholar 

  69. Kahn O. Molecular Magnetism. New York: VCH Publishers, 1993

    Google Scholar 

  70. Kinoshita M, Turek P, Tamura M, Nozawa K, Shiomi D, Nakazawa Y, Ishikawa M, Takahashi M, Awaga K, Inabe T, Maruyama Y. An organic radical ferromagnet. Chem Lett, 1991, 7: 1225–1228

    Article  Google Scholar 

  71. Ressouche E, Boucherle J X, Gillon B, Rey P, Schweizer J. Spin density maps in nitroxide-copper(II) complexes. A polarized neutron diffraction determination. J Am Chem Soc, 1993, 115: 3610–3617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZiLing Xue.

Additional information

Supported by a JINS (Joint Institute for Neutron Sciences) fellowship and the US National Science Foundation (CHE-0516928).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougan, B.A., Xue, Z. Polarized neutron diffraction and its application to spin density studies. Sci. China Ser. B-Chem. 52, 2083–2095 (2009). https://doi.org/10.1007/s11426-009-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0199-4

Keywords

Navigation