Skip to main content
Log in

Fabrication and sustained release properties of porous hollow silica nanoparticles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

MCM-41-type mesoporous silica nanospheres (MSN) have been prepared using n-cetyltrimethylammonium bromide (CTAB) as a soft template. The pseudo-moire’ rotational pattern inside the MSN results in many interior defects. Hollow mesoporous silica (HMS) spheres were synthesized by solvent extraction of the template from MSN. The morphology and structure of MSN and HMS were studied by TEM, XRD and nitrogen sorption techniques. A model drug, bromocresol green dye, was packed inside different regions of HMS through impregnation at different pressures and temperatures, and the drug release performance of the resulting materials was compared. The results showed that vacuum evaporation of solvents may enhance the controlled release properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710–712

    Article  CAS  Google Scholar 

  2. Clemens Z, Liang YC, Willy N, Anwander R. A general strategy for the rational design of size-selective mesoporous catalysts. Chem Eur J, 2007, 13: 3169–3176

    Article  Google Scholar 

  3. Kanatzidis MG. Beyond silica: nonoxidic mesostructured materials. Adv Mater, 2007, 19: 1165–1181

    Article  CAS  Google Scholar 

  4. Rivera-Jiménez SM, Hernández-Maldonado AJ. Nickel(II) grafted MCM-41: A novel sorbent for the removal of naproxen from water. Micropor Mesopor Mater, 2008, 116: 246–252

    Article  Google Scholar 

  5. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML, Li YS. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Ed, 2005, 44: 5083–5087

    Article  CAS  Google Scholar 

  6. Balas F, Manzano M, Horcajada P, Vallet-RegĽ M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc, 2006, 128: 8116–8117.

    Article  CAS  Google Scholar 

  7. Slowing I, Trewyn BG, Lin SY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc, 2006, 128: 14792–14793

    Article  CAS  Google Scholar 

  8. Qu FY, Zhu GS, Huang SY, Li SG, Qiu SL. Effective controlled release of captopril by silylation of mesoporous MCM-41. ChemPhys Chem, 2006, 7: 400–406

    CAS  Google Scholar 

  9. Trewyn BG, Whitman CM, Lin SY. Morphological control of roomtemperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett, 2004, 4: 2139–2143

    Article  CAS  Google Scholar 

  10. Möller K, Kobler J, Bein T. Colloidal suspensions of nanometersized mesoporous silica. Adv Funct Mater, 2007, 17: 605–612

    Article  Google Scholar 

  11. Che SA, Garcia BEA, Toshiyuki Y. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater, 2003, 2: 801–805

    Article  CAS  Google Scholar 

  12. Juan FD, Hitzky R. Selective functionalization of mesoporous silica. Adv Mater, 2000, 12: 430–432

    Article  Google Scholar 

  13. Dai S, Burleigh MC, Shin YS, Morrow CC, Barnes CE, Xue Z. Imprint coating: A novel synthesis of selective functionalized ordered mesoporous sorbents. Angew Chem Int Ed, 1999, 38: 1235–1239

    Article  CAS  Google Scholar 

  14. Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kimner KM. Functionalized monolayers on ordered mesoporous supports. Science, 1997, 276: 923–926

    Article  CAS  Google Scholar 

  15. Hijn WMV, Vos DED, Sels BF, Bossaert WD. Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem Commun, 1998, 317–318

  16. Hoffmann F, Cornelius M, Morell J, Fröba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed, 2006, 45: 3216–3251

    Article  CAS  Google Scholar 

  17. Yang Q, Wang S, Fan P, Wang LF, Di Y, Lin KF, Xiao FS. pH-Responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater, 2005, 7: 5999–6003

    Article  Google Scholar 

  18. Qu FY, Zhu GS, Lin HM, Sun JY, Zhang DL, Li SG, Qiu SL. Drug self-templated synthesis of ibuprofen/mesoporous silica for sustained release. Eur J Inorg Chem, 2006, 19: 3943–3947

    Article  Google Scholar 

  19. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin SY. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc, 2003, 25: 4451–4459

    Article  Google Scholar 

  20. Giri S, Trewyn BG, Stellmaker MP, Lin SY. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed, 2005, 44: 5038–5044

    Article  CAS  Google Scholar 

  21. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor Mesopor Mater, 2004, 68: 105–109

    Article  CAS  Google Scholar 

  22. Zhu YF, Shi JL, Chen HR, Shen WH, Dong XP. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Micropor Mesopor Mater, 2005, 84: 218–222

    Article  CAS  Google Scholar 

  23. Du L, Song HY, Yang X, Liao SJ, Petrik L. A novel hollow sphere mesoporous material synthesized by using DADD template and embedding Nd into framework simultaneously. Micropor Mesopor Mater, 2008, 113: 261–267

    Article  CAS  Google Scholar 

  24. Zhang FQ, Yan Y, Meng Y, Xia YL, Tu B, Zhao DY. Ordered bimodal mesoporous silica with tunable pore structure and morphology. Micropor Mesopor Mater, 2007, 98: 6–15

    Article  CAS  Google Scholar 

  25. Zhang Q, Zhang TR, Ge JP, Yin YD. Permeable silica shell through surface-protected etching. Nano Lett, 2008, 8: 2867–2871

    Article  CAS  Google Scholar 

  26. Zhang TR, Ge JP, Hu YX. Zhang Q, Aloni S, Yin Y D. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew Chem Int Ed, 2008, 47: 5806–5811

    Article  CAS  Google Scholar 

  27. Park SJ, Kim YJ, Park SJ. Size-dependent shape evolution of silica nanoparticles into hollow structures. Langmuir, 2008, 24: 12134–12137

    Article  CAS  Google Scholar 

  28. Glarneau A, Iapichella J, Bonhomme K, Renzo FD, Kooyman P, Terasaki O, Fajula F. Controlling the morphology of mesostructured silicas by pseudomorphic transformation: a route towards applications. Adv Funct Mater, 2006, 16: 1657–1667

    Article  Google Scholar 

  29. Wu S, Ju HX, Liu Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins. Adv Funct Mater, 2007, 17: 585–592

    Article  CAS  Google Scholar 

  30. State Pharmacopoeia Commission. People’s Republic of China Pharmacopoeia. Beijing: Chemical Industry Press, 2000. Appendix 203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiXin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Wang, X., Tao, L. et al. Fabrication and sustained release properties of porous hollow silica nanoparticles. Sci. China Chem. 53, 556–561 (2010). https://doi.org/10.1007/s11426-009-0192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0192-y

Keywords

Navigation