Skip to main content
Log in

Effects of vanadium(V)-substitution on the oxidative properties of α-Keggin-type heteropolyanion clusters—progress in DFT theoretical studies

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The redox properties of α-Keggin-type heteropolyanion clusters [XM12O40]n (X = Si, P; M = Mo, W) mainly depend on their constituent outer metal-oxygen cages {M12O36}. They act as “reservoirs”, through which the transfer and transition of electrons and protons may occur. At the atomic and molecular level, the redox properties of these clusters can be controlled and also tuned by modifying the metal M in the cages and the central heteroatom X of the clusters. Combined with relevant experimental results, this review summarizes our recent theoretical investigations of the effect of vanadium substitution on the redox properties of Keggin anion clusters. Theoretical modeling and calculation results showed that the oxidative ability of the modified species was increased by partial substitution of the cage M atoms of the Keggin clusters by vanadium atoms which have lower electronegativity. A linear correlation between the catalytic efficiency per vanadium atom and the microstructures of the vanadium(V)-substituted heteropolyanions [PV n Mo12−n O40](3+n)− (n = 1−3) was established for the first time. This relationship may be suitable to interpret the catalytic behavior of the title compounds in the hydroxylation of benzene to phenol, and may also be used in understanding other reactions such as the oxidative dehydrogenation of isobutyric acid and the nitration of adamantine. The establishment of this nearly linear structure-property relationship may lay the foundations of understanding the behavior of the title compounds in homogeneous catalytic oxidation reactions, and may direct the design of future catalysts and the choice of other catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope M T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983

    Google Scholar 

  2. Wang E B, Hu C W, Xu L. Introduction of Polyacid Chemistry (in Chinese). Beijing: Chemical Industry Press, 1998

    Google Scholar 

  3. Toshio O, Noritaka M, Makoto M. Catalysis by heteropoly compounds—recent developments. Appl Catal A, 2001, 222: 63–77

    Article  Google Scholar 

  4. Misono M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem Commun, 2001, 1141-1152

  5. Kiricsi I, ed. Heteropoly acids (special issue). Appl Catal A, 2003, 256: 1–317

  6. Hill C L, ed. Polyoxometalates—multicomponent molecular vehicles to probe fundamental issues and practical problems (special issue). Chem Rev, 1998, 98: 1–387

    Article  CAS  Google Scholar 

  7. Hill C L, ed. Polyoxometalates in catalysis (special issue). J Mol Catal A, 1996, 114: 1–359

    Google Scholar 

  8. Tsigdinos G A, Hallada J C. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorg Chem, 1968, 7: 437–441

    Article  CAS  Google Scholar 

  9. Seki Y, Min J S, Misono M, Mizuno N. Reaction mechanism of oxidation of methane with hydrogen peroxide catalyzed by 11-molybdo-1-vanadophosphoric acid catalyst precursor. J Phys Chem B, 2000, 104: 5940–5944

    Article  CAS  Google Scholar 

  10. Alekar N A, Indira V, Halligudi S B, Srinivas D, Gopinathan S, Gopinathan C. Kinetics and mechanism of selective hydroxylation of benzene catalysed by vanadium substituted heteropolymolybdates. J Mol Catal A, 2000, 164: 181–189

    Article  CAS  Google Scholar 

  11. Nomiya K, Yagishita K, Nemoto Y, Kamataki T. Functional action of Keggin-type mono-vanadium(V)-substituted heteropolymolybdate as a single species on catalytic hydroxylation of benzene in the presence of hydrogen peroxide. J Mol Catal A, 1997, 126: 43–53

    Article  CAS  Google Scholar 

  12. Zhang J, Tang Y, Li G, Hu C. Room temperature direct oxidation of benzene to phenol using hydrogen peroxide in the presence of vanadium-substituted heteropolymolybdates. Appl Catal A, 2005, 278: 251–261

    Article  CAS  Google Scholar 

  13. Misono M. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev — Sci Eng, 1987, 29: 269–321

    Article  CAS  Google Scholar 

  14. Wang J, Hu C, Jian M, Zhang J, Li G Y. Catalytic oxidation performances of the α-Keggin-type vanadium-substituted heteropolymolybdates: DFT Study on [PVnMo12−n O40](3+n)− (n = 0–3). J Catal, 2006, 240: 23–30

    Article  CAS  Google Scholar 

  15. Eguchi K, Seiyama T, Yamazoe N, Katsuki S, Taketa H. Electronic structure of XMo12O40 heteropolyanions (X = P, As, Si, and Ge) and their reduction behavior. J Catal, 1988, 111: 336–344

    Article  CAS  Google Scholar 

  16. Taketa H, Katsuki S, Eguchi K, Seiyama T, Yamazoe N. Electronic structure and redox mechanism of dodecamolybdophosphate. J Phys Chem, 1986, 90: 2959–2962

    Article  CAS  Google Scholar 

  17. Wang E B, Wang L G, Wang H Z, Wang Z P, Zhang B J, Zhao C D. The quantum study on four-electron heteropoly blue of α-Keggin structure Keggin (in Chinese). Acta Chim Sin, 1994, 52: 1145–1149

    Google Scholar 

  18. Jansen S A, Wang S H, Eddowes A D. Stability and acidity contributions of heteropolymetalates: A theoretical study of the Keggin and Dawson ions. Supramolec Sci, 1997, 4: 51–58

    Article  CAS  Google Scholar 

  19. Kempf J Y, Rohmer M-M, Poblet J M, Bo C, Bénard M. Relative basicities of the oxygen sites in [V10O28]6−. An analysis of the ab initio determined distributions of the electrostatic potential and of the Laplacian of charge density. J Am Chem Soc, 1992, 114: 1136–1146

    CAS  Google Scholar 

  20. Rohmer M-M, Devémy J, Wiest R, Bénard M. Ab Initio modeling of the endohedral reactivity of polyoxometallates: 1. Host-guest interactions in [RCN ⊂ (V12O32)4−] (R = H, CH3, C6H5). J Am Chem Soc, 1996, 118: 13007–13014

    Article  CAS  Google Scholar 

  21. Guo Y R, Pan Q J, Wei Y D, Li Z H, Zhou B B. Ab initio studies on Keggin structure polyoxometalate α-[SiW12O40]4− (in Chinese). Chem Res Chin Univ, 2003, 24: 1862–1864

    CAS  Google Scholar 

  22. Foresman J B, Frisch A. Exploring chemistry with electronic structure methods (2nd Ed.). Gaussian, Inc Pittsburgh, PA

  23. Xu X, Goddard W A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci USA, 2004, 101: 2673–2677

    Article  CAS  Google Scholar 

  24. Handy N C, Cohen A J. Left-right correlation energy. Mol Phys. 2001, 99: 403–412

    Article  CAS  Google Scholar 

  25. Maestre J M, López X, Bo C, Poblet J M, Casaň-Pastor N. Electronic and magnetic properties of α-Keggin anions: A DFT study of [XM12O40]n (X = AlIII, SiIV, PV, FeIII, CoII, CoIII; M = Mo, W) and [SiM11VO40]m (M = Mo, W). J Am Chem Soc, 2001, 123: 3749–3758

    Article  CAS  Google Scholar 

  26. López X, Bo C, Poblet J M. Electronic properties of polyoxometalates: Electron and proton affinity of mixed-addenda Keggin and Wells-Dawson anions. J Am Chem Soc, 2002, 124: 12574–12582

    Article  Google Scholar 

  27. López X, Fernández J A, Romo S, Pual J F, Kazansky L, Poblet J M. Are the solvent effects critical in the modeling of polyoxoanions? J Comput Chem, 2004, 25: 1542–1549

    Article  Google Scholar 

  28. López X, Maestre J M, Bo C, Poblet J M. Electronic properties of polyoxometalates: A DFT study of α/β-[XM12O40]n relative stability (M = W, Mo and X a main group element). J Am Chem Soc, 2001, 123: 9571–9576

    Article  Google Scholar 

  29. López X, Bo C, Poblet J M, Sarasa J P. Relative stability in α- and β-Wells-Dawson heteropolyanions: A DFT study of [P2M18O62]6− (M = W and Mo) and [P2W15V3O62]n. Inorg Chem, 2003, 42: 2634–2638

    Article  Google Scholar 

  30. Poblet J M, López X, Bo C. Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates. Chem Soc Rev, 2003, 32: 297–308

    Article  CAS  Google Scholar 

  31. Yan L K, Dou Z, Guan W, Shi S Q, Su Z M, A DFT study on the electronic and redox properties of (PW11O39(ReN)n (n = 3, 4, 5) and (PW11O39(OsN)2−. Eur J Inorg Chem, 2006: 5126-5129

  32. Guan W, Yan L K, Su Z M, Liu S X, Zhang M, Wang X H. Electronic properties and stability of di-titaniumIV substituted α-Keggin polyoxotungstate with heteroatom phosphorus by DFT. Inorg Chem, 2005, 44: 100–107

    Article  CAS  Google Scholar 

  33. Guan W, Yan L K, Su Z M, Wang E B, Wang X H. Density functional study of protonation sites of α-Keggin isopolyanions. Int J Quantum Chem, 2006, 106: 1860–1864

    Article  CAS  Google Scholar 

  34. Yan L K, Su Z M, Tan K, Zhang M, Qu L U, Wang R S. Electronic properties of Strandberg anions: A DFT study of [X2Mo5O23]n, (X = PV, SVI, AsV, SeVI), and [(RP)2Mo5O21]4− (R = H, CH3, C2H5), Int J Quantum Chem, 2005, 105: 37–42

    Article  CAS  Google Scholar 

  35. Sun X Y, Tan K, Yan L K, Feng J D, Guan W, Su Z M. DFT studies on electronic properties of hetero polyanion of Keggin α-[AlW9Mo3O40]5− (in Chinese). J Northeast Normal Univ (Natural Sci Edit), 2004, 36: 56–60

    CAS  Google Scholar 

  36. Day V W, Klemperer W G. Metal oxide chemistry in solution: The early transition metal polyoxoanions. Science, 1985, 228: 533–541

    Article  CAS  Google Scholar 

  37. Maeda K, Katano H, Osakai T, Himeno S. Charge dependence of one-electron redox potentials of Keggin-type heteropolyoxometalate anions. J Electroanal Chem, 1995, 389: 167–173

    Article  Google Scholar 

  38. Cadot E, Fournier M, Tézé A, Hervé G. Electrochemical properties and ESR characterization of mixed valence α-[XMo3−x VxW9O40]n heteropolyanions with X = PV and SiIV, x = 1, 2, or 3. Inorg Chem, 1996, 35: 282–288

    Article  CAS  Google Scholar 

  39. Akimoto M, Ikeda H, Okabe A, Echigoya E. 12-Heteropolymolybdates as catalysts for vapor-phase oxidative dehydrogenation of isobutyric acid: 3. Molybdotungstophosphoric and molybdovanadophosphoric acids. J Catal, 1984, 89: 196–208

    Article  CAS  Google Scholar 

  40. Watzenberger A, Emig G, Lynch D T. Oxydehydrogenation of isobutyric acid with heteropolyacid catalysts: Experimental observations of deactivation. J Catal, 1990, 124: 247–258

    Article  CAS  Google Scholar 

  41. Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y. Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphoric acid. Angew Chem Int Ed, 2005, 44: 2586–2588

    Article  CAS  Google Scholar 

  42. Seki Y, Mizuno N, Misono M. Catalytic performance of 11-molybdo-1-vanadophosphoric acid as a catalyst precursor and the optimization of reaction conditions for the oxidation of methane with hydrogen peroxide. Appl Catal A, 2000, 194–195: 13–20

    Google Scholar 

  43. Shinachi S, Yahiro H, Yamaguchi K, Mizuno N. Nitration of alkanes with nitric acid by vanadium-substituted polyoxometalates. Chem Eur J, 2004, 10: 6489–6496

    Article  CAS  Google Scholar 

  44. Bridgeman A J. Density functional study of the vibrational frequencies of α-Keggin heteropolyanions. Chem Phys, 2003, 287: 55–69

    Article  CAS  Google Scholar 

  45. Guo Y R, Pan Q J, Wei Y D, Li Z H, Li X. Theoretical studies on the electronic and spectroscopic properties of Keggin-structure polyoxometalates α/β-Keggin [XM12O40]n (X = Si, P; M = Mo, W). J Mol Struct (THEOCHEM), 2004, 676: 55–64

    Article  CAS  Google Scholar 

  46. López X, Nieto-Draghi C, Bo C, Avalos J B, Poblet J M. Polyoxometalates in solution: Molecular dynamics simulations on the α-PW12O40 3− Keggin anion in aqueous media. J Phys Chem A, 2005, 109: 1216–1222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinYue Wang.

Additional information

Supported by the Special Project of Key Laboratory of the Sichuan Provincial Department of Education (Grant No. 2006ZD051), the National Natural Science Foundation of China (Grant No. 20072024), and the Doctoral Fund Project of Yibin University (Grant No. 2006B03)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Fu, X., Wang, J. et al. Effects of vanadium(V)-substitution on the oxidative properties of α-Keggin-type heteropolyanion clusters—progress in DFT theoretical studies. Sci. China Ser. B-Chem. 52, 2096–2105 (2009). https://doi.org/10.1007/s11426-009-0191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0191-z

Keywords

Navigation