Skip to main content
Log in

Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of icosahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elschenbroich C, Salzer A. Organometallics-A Concise Introduction. Weinheim: VCH, 1989

    Google Scholar 

  2. Collman J P, Hegedus L S, Norton J R, Finke R G. Principles and Applications of Organotransition Metal Chemistry. California: University Science Books, 1987

    Google Scholar 

  3. Crabtree R H. The Organometallic Chemistry of the Transition Metal. New Jersey: John Wiley & Sons, 2005

    Book  Google Scholar 

  4. Knowles W S. Asymmetric hydrogenations (Nobel lecture). Angew Chem Int Ed Engl, 2002, 41(12): 1998–2007

    Article  CAS  Google Scholar 

  5. Noyori R. Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed Engl, 2002, 41(12): 2008–2022

    Article  CAS  Google Scholar 

  6. Sharpless K B. Searching for new reactivity (Nobel lecture). Angew Chem Int Ed Engl, 2002, 41(12): 2024–2032

    Article  CAS  Google Scholar 

  7. Chauvin Y. Olefin metathesis: the early days (Nobel lecture). Angew Chem Int Ed Engl, 2006, 45(23): 3740–3747

    Article  CAS  Google Scholar 

  8. Schrock R R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew Chem Int Ed Engl, 2006, 45(23): 3748–3759

    Article  CAS  Google Scholar 

  9. Grubbs R H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew Chem Int Ed Engl, 2006, 45(23): 3760–3765

    Article  CAS  Google Scholar 

  10. Huheey J E, Keiter E A, Keiter R L. Inorganic Chemistry. Princoples of Structure and Reactivity. New York: HarperCollins College Publishers, 1993

    Google Scholar 

  11. Pruett R L. Hydroformylation: An old yet new industrial route to alcohols. J Chem Educ, 1986, 63(3): 196–198

    Article  CAS  Google Scholar 

  12. Forster D, Dekleva T W. Catalysis of the carbonylation of alcohols to carboxylic acid synthesis from methanol. J Chem Educ, 1986, 63(3): 204–206

    Article  CAS  Google Scholar 

  13. Tolman C A. The 16 and 18 electron rule in organometallic chemistry and homogeneous catalysis. Chem Soc Rev, 1972, 1(3): 337–353

    Article  CAS  Google Scholar 

  14. Xie Z W. Cyclopentadienyl-carboranyl hybrid compounds: A new class of versatile ligands for organometallic chemistry. Acc Chem Res, 2003, 36(1): 1–9

    Article  CAS  Google Scholar 

  15. Xie Z W. Group 4 metallocenes incorporating constrained-geometry carboranyl ligands. Coord Chem Rev, 2006, 250(1–2): 259–272

    Article  CAS  Google Scholar 

  16. Shen H, Xie Z W. Constrained-geometry ruthenium carboranyl complexes and their unique chemical properties, Chem Comm, 2009, (18): 2431–2445

  17. Xie Z W. Advances in the chemistry of metallacarboranes of f-block elements. Coord Chem Rev, 2002, 231(1–2): 23–46

    Article  CAS  Google Scholar 

  18. Deng L, Xie Z W. Advances in the chemistry of carboranes and metallacarboranes with more than 12 vertices. Coord Chem Rev, 2007, 251(17–20): 2452–2476

    Article  CAS  Google Scholar 

  19. Deng L, Xie Z W. A journey from 12-vertex to 14-vertex carboranes and to 15-vertex metallacarboranes. Organometallics, 2007, 26(8): 1832–1845

    Article  CAS  Google Scholar 

  20. Hosmane N S, Maguire J A. Metallacarborane of d- and f-block metals. Comprehensive Organometallic Chemistry III. Vol.3. Oxford: Elsevier, 2007

    Google Scholar 

  21. Saxena A K, Hosmane N S. Recent advances in the chemistry of carborane metal complexes incorporating d- and f-block elements. Chem Rev, 1993, 93(3): 1081–1124

    Article  CAS  Google Scholar 

  22. Grimes R N. Transition metal metallacarboranes. Comprehensive Organometallic Chemistry II. Vol.1. Oxford; New York; Tokyo: Pergamon, 1995

    Google Scholar 

  23. Sit M M, Chan H S, Xie Z W. Synthesis, structure, and reactivity of group 4 metallacycles incorporating a Me2C-linked cyclopentadienyl-carboranyl ligand. Dalton Trans, 2008, (11): 1454–1464

  24. Wang H, Wang Y, Chan H S, Xie Z W. Synthesis, structural characterization, reactivity, and thermal stability of [η 5: σ-Me2C(C5H4) (C2B10H10)]Ti(R)(NMe2). Inorg Chem, 2006, 45(14): 5675–5683

    Article  CAS  Google Scholar 

  25. Wang H, Li H W, Xie Z W. Multiple insertion of unsaturated molecules into the Zr-N bonds of [η 5: σ-Me2A(C9H6)(C2B10H10)]Zr-(NMe2)2 (A = C, Si). Organometallics, 2003, 22(22): 4522–4531

    Article  CAS  Google Scholar 

  26. Wang H, Wang Y, Li H W, Xie Z W. Synthesis, structural characterization, and olefin polymerization behavior of group 4 metal complexes with constrained-geometry carborane ligands. Organometallics, 2001, 20(24): 5110–5118

    Article  CAS  Google Scholar 

  27. Wang Y, Wang H, Wang H, Chan H S, Xie Z W. Reactions of L2Zr(NMe)2with Me3Al and PhC≡CH: Synthesis and structural characterization of new zirconium carborane complexes [L2= Me2Si-(C9H6)(C2B10H10) and Me2C(C5H4)(C2B10H10)]. J Organomet Chem, 2003, 683(1): 39–43

    Article  CAS  Google Scholar 

  28. Zi G, Li H W, Xie Z W. Synthesis, structural characterization, and catalytic property of group 4 metal carborane compounds with a iPr2NB-bridged constrained-geometry ligand. Organometallics, 2002, 21(19): 3850–3855

    Article  CAS  Google Scholar 

  29. Wang H, Chan H S, Okuda J, Xie Z W. Synthesis, structural characterization, and catalytic properties of group 4 metal complexes incorporating a phosphorus-bridged indenyl-carboranyl constrained-geometry ligand. Organometallics, 2005, 24(13): 3118–3124

    Article  CAS  Google Scholar 

  30. Wang H, Chan H S, Xie Z W. Pentavalent vs talent phosphorus-bridged ligands. Synthesis and structural characterization of unexpected group 4 metal complexes incorporating an indenylide unit, [σ: σ-iPr2NP(O)(C9H6)(C2B10H10)]M(NR2)2. Organometallics, 2006, 25(10): 2569–2573

    Article  CAS  Google Scholar 

  31. Wang H, Shen H, Chan H S, Xie Z W. Synthesis and structural characterization of group 4 metal complexes bearing pentavalent phosphorus-bridged ligands [(C13H8)(iPr2N)P(=O)(C2B10H10)]2− and [(C13H9)(iPr2N)P(=O)(C2B9H10)]2−. Organometallics, 2008, 27(15): 3964–3970

    Article  CAS  Google Scholar 

  32. Tunge J A, Czerwinski C J, Gately D A, Norton J R. Mechanism of insertion of carbodiimides into the Zr-C Bonds of zirconaaziridines. Formation of α-amino amidines. Organometallics, 2001, 20(2): 254–260

    Article  CAS  Google Scholar 

  33. Martins A M, Ascenso J R, de Azevedo C G, Dias A R, Duarte M T, da Silva J F, Veiros L F, Rodrigues S S. Insertion of isocyanides into group 4 metal-carbon and metal-nitrogen bonds. Syntheses and DFT calculations. Organometallics, 2003, 22(21): 4218–4228

    Article  CAS  Google Scholar 

  34. Cano J, Sudupe M, Royo P, Mosquera M E G. Insertion reactions into the metal-alkyl and metal-amido bonds of 1,3-di(silyl-η-amido) cyclopentadienyl titanium and zirconium complexes. Organometallics, 2005, 24(10): 2424–2432

    Article  CAS  Google Scholar 

  35. Vujkovic N, Ward B D, Maisse-François A, Wadepohl H, Mountford P, Gade L H. Imido-alkyne coupling in titanium complexes: new insights into the alkyne hydroamination reaction. Organometallics, 2007, 26(23): 5522–5534

    Article  CAS  Google Scholar 

  36. Sánchez-Nieves J, Royo P, Pellinghelli M A, Tiripicchio A. Insertion of isocyanides into tantalum-methyl and tantalum-amido bonds. Organometallics, 2000, 19(16): 3161–3169

    Article  CAS  Google Scholar 

  37. Gately D A, Norton J R, Goodson P A. Insertion of isocyanates, CO2, and ethylene carbonate into the Zr-C and Zr-N bonds of imine complexes. Construction of chiral centers like those in σ-amino acids. J Am Chem Soc, 1995, 117(3): 986–996

    Article  CAS  Google Scholar 

  38. Gambarotta S, Strologo S, Floriani C, Chiesi-Villa A, Guastini C. Insertion of carbon dioxide-like molecules into zirconium-carbon bonds: reactivity of dialkylbis(cyclopentadienyl)zirconium(IV) with diphenylketene, aryl isocyanates, and p-tolylcarbodiimide. Inorg Chem, 1985, 24(5): 654–660

    Article  CAS  Google Scholar 

  39. Shen H, Chan H S, Xie Z W. Reaction of [σ: η 5-(C9H6)C2B9H10]Zr(NMe2)(DME) with guanidines: metallacarborane-mediated C-N bond cleavage and 1,5-sigmatropic rearrangement. J Am Chem Soc, 2007, 129(43): 12934–12935

    Article  CAS  Google Scholar 

  40. Amor F, Sánchez-Nieves J, Royo P, Jacobsen H, Blacque O, Berke H, Lanfranchi M, Pellinghelli M A, Tiripicchio A. Competitive insertion of isocyanide into tantalum-amido and tantalum-methyl bonds. Eur J Inorg Chem, 2002, (11): 2810–2817

  41. Thirupathi N, Yap G P A, Richeson D S. Mono- and dianionic guanidinate ligands. Reactivity of [iPrNC(NiPr)2]Ta(NMe2)3 and [(iPrNH)C(NiPr)2]TaCl(NMe2)3 with Me3SiCl and ArNC (Ar = 2,6-Me2C6H4). Organometallics, 2000, 19(13): 2573–2579

    Article  CAS  Google Scholar 

  42. Wu Z, Diminnie J B, Xue Z. Multi-insertion reactions of isocyanides with zirconium amido silyl complexes. Organometallics, 1999, 18(6): 1002–1010

    Article  CAS  Google Scholar 

  43. Saoud M, Romerosa A, Peruzzini M, Water-soluble ruthenium vinylidene and allenylidene complexes: potential catalysts for ring-opening metathesis. Organometallics, 2000, 19(20): 4005–4007

    Article  CAS  Google Scholar 

  44. Chen X, Xue P, Sung H H Y, Williams I D, Peruzzini M, Bianchini C, Jia G. Ruthenium-promoted Z-selective head-to-head dimerization of terminal alkynes in organic and aqueous media. Organometallics, 2005, 24(18): 4330–4332

    Article  CAS  Google Scholar 

  45. Katayama H, Yari H, Tanaka M, Ozawa F. (Z)-Selective cross-dimerization of arylacetylenes with silylacetylenes catalyzed by vinylideneruthenium complexes. Chem Commun, 2005, (34): 4336–4338

  46. Wakatsuki Y, Koga N, Yamazaki H, Morokuma K. Acetylene π-coordination, slippage to σ-coordination, and 1,2-hydrogen migration taking place on a transition metal. The case of a Ru(II) complex as studied by experiment and ab initio molecular orbital simulations. J Am Chem Soc, 1994, 116(18), 8105–8111

    Article  CAS  Google Scholar 

  47. Yi C S, Liu N, Rheingold A L, Liable-Sands L M, Guzei I A, Reaction of the in-situ-generated ruthenium-acetylide complex C5Me5Ru(PPh3)C≡CPh with small molecules. Organometallics, 1997, 16(17): 3729–3731

    Article  CAS  Google Scholar 

  48. Sun Y, Chan H-S, Dixneuf P H, Xie Z W. Synthesis, structural characterization, ligand displacement reaction, and electrochemical property of ruthenium complexes incorporating linked cyclopentadienyl-carboranyl ligands. Organometallics, 2004, 23(24): 5864–5872

    Article  CAS  Google Scholar 

  49. Sun Y, Chan H-S, Dixneuf P H, Xie Z W. An unprecedented intramolecular coupling of o-carboranyl and cyclopentadienyl. Synthesis and structural characterization of a ruthenium complex containing a novel doubly-bridged cyclopentadienyl-carboranyl ligand. Chem Commun, 2004, 2588–2589

  50. Sun Y, Chan H-S, Dixneuf P H, Xie Z W. Reactions of [η 5: σMe2C(C5H4)(C2B10H10)]Ru(COD) with Lewis bases: Synthesis, structure, and electrochemistry of ruthenium amine, nitrile, carbene, phosphite and phosphine complexes. J Organomet Chem, 2006, 691(13): 3071–3082

    Article  CAS  Google Scholar 

  51. Sun Y, Chan H S, Xie Z W. Reaction of [η 5: σ-Me2C(C5H4)C2B10H10)]Ru(NH2Prn)2 with alkynes. Synthesis and structural characterization of ruthenium aminocarbene and enamine complexes. Organometallics, 2006, 25(14): 3447–3453

    Article  CAS  Google Scholar 

  52. Sun Y, Chan H S, Dixneuf P H, Xie Z W. Reaction of [η 5: σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2 with Me3SiC≡CR. Synthesis and structural characterization of mononuclear ruthenium bis(vinylidene) and vinylvinylidene complexes. Organometallics, 2006, 25(11): 2719–2721

    Article  CAS  Google Scholar 

  53. Katayama H, Wada C, Taniguchi K, Ozawa F. Effect of substituents on the formation of vinylideneruthenium(II) complexes. X-ray structures of RuCl2{=C=C(Z)Ph}(dcpmp) (Z = H, SiMe3; dcpmp = C5H3N(CH2PCy2)2). Organometallics, 2002, 21(15): 3285–3291

    Article  CAS  Google Scholar 

  54. Tenorio M A J, Tenorio M J, Puerta M C, Valerga P. Alkyne coupling reactions mediated by tris(pyrazolyl)borate ruthenium vinylidene complexes: X-Ray crystal structures of [TpRu=C=CHPh(PEt3)2][BPh4] and [TpRu=C=C(COOMe)CH=CHCOOMe(PEt3)2][BPh4]. Organometallics, 2000, 19(7): 1333–1342

    Article  CAS  Google Scholar 

  55. Carmichael D, Klankermayer J, Ricard L, Seeboth N. Synthesis and resolution of the planar chirality of ester-functionalised phospharuthenocenes. Chem Commun, 2004, 1144–1145

  56. Kunz D, Fröhlich R, Erker G. Preparation and structural features of lithium cyclopentadienides that contain amino acid-derived Cp-substituents. Organometallics, 2001, 20(3): 572–574

    Article  CAS  Google Scholar 

  57. Sun Y, Chan H S, Xie Z W. Reaction scope and mechanism of sterically induced ruthenium-mediated intramolecular coupling of o-carboranyl with cyclopentadienyl. Synthesis and structure of ruthenium complexes incorporating doubly linked cyclopentadienyl-carboranyl ligands. Organometallics, 2006, 25(17): 4188–4195

    Article  CAS  Google Scholar 

  58. Sun Y, Chan H-S, Zhao H, Lin Z, Xie Z W. Ruthenium-mediated coupling/cycloaddition of the cyclopentadienyl ligand in [{η 5: σ-Me2C(C5H4)(C2B10H10)}Ru(NCCH3)2] with alkynes. Angew Chem Int Ed Engl, 2006, 45(33): 5533–5536

    Article  CAS  Google Scholar 

  59. Trost B M, Toste F D, Pinkerton A B. Non-metathesis ruthenium-catalyzed C-C bond formation. Chem Rev, 2001, 101(7): 2067–2096

    Article  CAS  Google Scholar 

  60. Ritleng V, Sirlin C, Pfeffer M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev, 2002, 102(5): 1731–1770

    Article  CAS  Google Scholar 

  61. Bruneau C, Dixneuf P H. Ruthenium Catalysts and Fine Chemistry. Berlin: Springer, 2004

    Google Scholar 

  62. Trost B M, Frederiksen M U, Rudd M T. Ruthenium-catalyzed reactions—A treasure trove of atom-economic transformations. Angew Chem Int Ed Engl, 2005, 44(41): 6630–6666

    Article  CAS  Google Scholar 

  63. Bruneau C, Dixneuf P H. Metal vinylidenes and allenylidenes in catalysis: applications in anti-markovnikov additions to terminal alkynes and alkene metathesis. Angew Chem Int Ed Engl, 2006, 45(14): 2176–2203

    Article  CAS  Google Scholar 

  64. Wang H, Li H-W, Huang X, Lin Z, Xie Z W. Synthesis, structure, and bonding of a zirconocene-1,2-dehydro-o-carborane complex. Angew Chem Int Ed Engl, 2003, 42(36): 4347–4349

    Article  CAS  Google Scholar 

  65. Buchwald S L, Watson B T, Huffman J C. Trimethylphosphine adduct of the zirconocene-benzyne complex: synthesis, reactions, and x-ray crystal structure. J Am Chem Soc, 1986, 108(23): 7411–7413

    Article  CAS  Google Scholar 

  66. Buchwald S L, Nielsen R B. Group 4 metal complexes of benzynes, cycloalkynes, acyclic alkynes, and alkenes. Chem Rev, 1988, 88(7): 1047–1058

    Article  CAS  Google Scholar 

  67. Deng L, Chan H S, Xie Z W. Synthesis, structure, and reactivity of a zirconocene-carboryne precursor. J Am Chem Soc, 2005, 127(40): 13774–13775

    Article  CAS  Google Scholar 

  68. Ren S, Chan H S, Xie Z W. Reaction of zirconocene-carboryne precusor with alkynes: an efficient route to zirconacyclopentenes incorporating a carboranyl unit. Organometallics, 2009, 28(14): 4106–4114

    Article  CAS  Google Scholar 

  69. Xi C, Huo S, Afifi T H. Hara R, Takahashi T. Remarkable effect of copper chloride on diiodination of zirconacyclopentadienes. Tetrahedron Lett, 1997, 38(23): 4099–4102

    Article  CAS  Google Scholar 

  70. Ren S, Xie Z W. A facile and practical synthetic route to 1,1′-bis(o-carborane)-Organometallics, 2008, 27(19): 5167–5168

    CAS  Google Scholar 

  71. Ren S, Chan H S, Xie Z W. Synthesis, structure, and reactivity of zirconacyclopentene incorporating a carboranyl unit. J Am Chem Soc, 2009, 131(11): 3862–3863

    Article  CAS  Google Scholar 

  72. Sayler A A, Beall H, Sieckhaus J F. Unusual chelated o-carborane transition metal complex. J Am Chem Soc, 1973, 95(17): 5790–5792

    Article  CAS  Google Scholar 

  73. Deng L, Chan H S, Xie Z W. Nickel-mediated regioselective [2+2+2] cycloaddition of carboryne with alkynes. J Am Chem Soc, 2006, 128(24): 7728–7729

    Article  CAS  Google Scholar 

  74. Qiu Z, Xie Z W. Nickel-mediated coupling reactions of carboryne with alkenes: a synthetic route to alkenylcarboranes. Angew Chem Int Ed Engl, 2008, 47(35): 6572–6575

    Article  CAS  Google Scholar 

  75. Huang X, Zhu J, Lin Z. β-Hydrogen elimination of five-membered-ring metallacycles. Is it possible? Organometallics, 2004, 23(17): 4154–4159

    Article  CAS  Google Scholar 

  76. Qiu Z, Xie Z W. Nickel-mediated three-component cycloaddition reaction of carboryne, alkenes, and alkynes. J Am Chem Soc, 2009, 131(6): 2084–2085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZuoWei Xie.

Additional information

Supported by the Research Grants Council of the Hong Kong Special Administration Region (Grant No. 404108)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Z., Xie, Z. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes. Sci. China Ser. B-Chem. 52, 1544–1558 (2009). https://doi.org/10.1007/s11426-009-0184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0184-y

Keywords

Navigation