Skip to main content
Log in

Solvothermal synthesis and luminescence properties of CdS:Mn nanorods

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

CdS:Mn nanorods have been produced via a solvothermal approach in the nonaqueous solvent of ethylenediamine. An absolutely dominant single Mn2+ emission originating from the d-d (4T1-6A1) transition was obtained in CdS:Mn nanocrystals at room temperature. The effects of varying reaction temperature, molar ratio of S/Cd, and reaction time on the crystallinity and luminescence of CdS:Mn nanocrystals were systematically investigated. 1% Mn2+-doped CdS nanorods without any other additives were synthesized at 130°C for 10 h with an S/Cd molar ratio of 2:1. They show a rod-like shape, and their luminescence intensity around 593 nm is almost the strongest of all the nanorod samples investigated. CdS:Mn nanorods promise potential applications in nanoscale electronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang J, Zeng J H, Yu S H, Yang L, Zhou G E, Qian Y T. Formation process of CdS nanorods via solvothermal route. Chem Mater, 2000, 12: 3259–3263

    Article  CAS  Google Scholar 

  2. Chu H B, Li X M, Chen G D, Zhou W W, Zhang Y, Jin Z, Xu J J, Li Y. Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst Growth Des, 2005, 5: 1801–1806

    Article  CAS  Google Scholar 

  3. Zhang P, Gao L. Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir, 2003, 19: 208–210

    Article  Google Scholar 

  4. Li Y D, Liao H W, Ding Y, Qian Y T, Yang L, Zhou G E. Nonaqueous synthesis of CdS nanorod semiconductor. Chem Mater, 1998, 10: 2301–2303

    Article  CAS  Google Scholar 

  5. Na C W, Han D S, Kim D S, Kang Y J, Lee J Y, Park J. Photoluminescence of Cd1−x MnxS (x⩽0.3) nanowires. J Phys Chem B, 2006, 110: 6699–6704

    Article  CAS  Google Scholar 

  6. Yong K T, Sahoo Y, Swihart M T, Prasad P N. Shape control of CdS nanocrystals in one-pot synthesis. J Phys Chem C, 2007, 111: 2447–2458

    Article  CAS  Google Scholar 

  7. Chen X J, Xu H F, Xu N S, Zhao F H, Lin W J, Lin G, Fu Y L, Huang Z L, Wang H Z, Wu M M. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg Chem, 2003, 42: 3100–3106

    Article  CAS  Google Scholar 

  8. Ye C H, Meng G W, Wang Y H, Jiang Z, Zhang L D. On the growth of CdS nanowires by the evaporation of CdS nanopowders. J Phys Chem B, 2002, 106: 10338–10341

    Article  CAS  Google Scholar 

  9. Jun Y W, Lee S M, Kang N J, Cheon J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc, 2001, 123: 5150–5151

    Article  CAS  Google Scholar 

  10. Zhai T Y, Gu Z J, Zhong H Z, Dong Y, Ma Y, Fu H B, Li Y F, Yao J N. Design and fabrication of rocketlike tetrapodal CdS nanorods by seed-epitaxial metal-organic chemical vapor deposition. Cryst Growth Des, 2007, 7: 488–491

    Article  CAS  Google Scholar 

  11. Dong L F, Gushtyuk T, Jiao J. Synthesis, characterization, and growth mechanism of self-assembled dendritic CdS nanorods. J Phys Chem B, 2004, 108: 1617–1620

    Article  CAS  Google Scholar 

  12. Yao W T, Yu S H, Liu S J, Chen J P, Liu X M, Li F Q. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J Phys Chem B, 2006, 110: 11704–11710

    Article  CAS  Google Scholar 

  13. Nag A, Sapra S, Nagamani C, Sharma A, Pradhan N, Bhat S V, Sarma D D. A study of Mn2+ doping in CdS nanocrystals. Chem Mater, 2007, 19: 3252–3259

    Article  CAS  Google Scholar 

  14. Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 1. Surface passivation and Mn2+ concentration. J Phys Chem B, 2001, 105: 10197–10202

    Article  CAS  Google Scholar 

  15. Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 2. Enhancement by UV irradiation. J Phys Chem B, 2001, 105: 10203–10209

    Article  CAS  Google Scholar 

  16. Denzler D, Olschewski M, Sattler K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J Appl Phys, 1998, 84: 2841–2845

    Article  CAS  Google Scholar 

  17. Dunstan D E, Hagfeldt A, Almgren M, Siegbahn H O G, Mukhtar E. Importance of surface reactions in the photochemistry of ZnS colloids. J Phys Chem, 1990, 94: 6797–6804

    Article  CAS  Google Scholar 

  18. Sun J Q, Hao E C, Sun Y P, Zhang X, Yang B, Zou S, Shen J C, Wang S B. Multilayer assemblies of colloidal ZnS doped with silver and polyelectrolytes based on electrostatic interaction. Thin Solid Films, 1998, 327–329: 528–531

    Article  Google Scholar 

  19. Luo X X, Cao W H, Zhou L X. Synthesis and luminescence properties of (Zn, Cd)S:Ag nanocrystals by hydrothermal method. J Lumin, 2007, 122–123: 812–815

    Article  Google Scholar 

  20. Tata M, Banerjee S, John V T, Waguespack Y, Mcpherson G L. Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions. Colloid Surface A, 1997, 127: 39–46

    Article  CAS  Google Scholar 

  21. Yang P, Song C F, Lv M K, Zhou G J, Yang Z X, Xu D, Yuan D R. Photoluminescence of Cu+-doped and Cu2+-doped ZnS nanocrystallites. J Phys Chem Solids, 2002, 63: 639–643

    Article  CAS  Google Scholar 

  22. Gan L M, Liu B, Chew C H, Xu S J, Chua S J, Loy G L, Xu G Q. Enhanced photoluminescence and characterization of Mn-doped ZnS nanocrystallites synthesized in microemulsion. Langmuir, 1997, 13: 6427–6431

    Article  CAS  Google Scholar 

  23. Zimnitsky D, Jiang C Y, Xu J, Lin Z Q, Tsukruk V V. Substrate- and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film. Langmuir, 2007, 23: 4509–4515

    Article  CAS  Google Scholar 

  24. Bryant G W, Jaskolski W. Surface effects on capped and uncapped nanocrystals. J Phys Chem B, 2005, 109: 19650–19656

    Article  CAS  Google Scholar 

  25. Wakefield G, Keron H A, Dobson P J, Hutchison J L. Structural and optical properties of terbium oxide nanoparticles. J Phys Chem Solids, 1999, 60: 503–508

    Article  CAS  Google Scholar 

  26. Yu Z G, Pryor C E, Lau W H, Berding M A, MacQueen D B. Core-shell nanorods for efficient photoelectrochemical hydrogen production. J Phys Chem B, 2005, 109: 22913–22919

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiXin Cao.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50672089) and the Program for New Century Excellent Talents in University (NCET-08-0511)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Qu, H., Sun, D. et al. Solvothermal synthesis and luminescence properties of CdS:Mn nanorods. Sci. China Ser. B-Chem. 52, 2134–2140 (2009). https://doi.org/10.1007/s11426-009-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0170-4

Keywords

Navigation