Skip to main content
Log in

Separation of acidic and basic proteins by capillary electrophoresis using gemini surfactants and gemini-capped nanoparticles as buffer additives

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

This paper demonstrated simultaneous separation of acidic and basic proteins using cationic gemini surfactants as buffer additives in capillary electrophoresis. We showed that even at a low concentration (0.1 mmol·L−1) of alkanediyl-α,ω-bis(dimethyloctadecylammonium bromide) (18-s-18), the wall adsorption of both acidic and basic proteins could be effectively suppressed under acidic conditions. Smaller micelle size (e.g., s = 5–8) is more effective for the separation of acidic proteins than larger micelle size (e.g., s < 4 or > 10). Varying the spacer length of gemini surfactants can influence the electrophoretic mobility and selectivity of proteins to achieve the desired separation. Under the optimized conditions, RSDs of the migration time were less than 0.8% and 2.2% for run-to-run and day-to-day assays, respectively, and protein recoveries ranged from 79% to 100.4%. Furthermore, we also investigated the use of gemini surfactant-capped gold nanoparticles (gemini@AuNPs) as buffer additives in protein separation. Introduction of AuNPs into the buffer shortened the analysis time and slightly improved the separation efficiencies. Finally, we presented the applications of this method in the analysis of biological samples, including plasma, red blood cells and egg white.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norde W, Haynes C A. Proteins at Interfaces II: Fundamentals and Applications. Washington DC: American Chemical Society, 1995

    Google Scholar 

  2. McCormick R M. Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries. Anal Chem, 1988, 60: 2322–2328

    Article  CAS  Google Scholar 

  3. Green J S, Jorgenson J W. Minimizing adsorption of proteins on fused silica in capillary zone electrophoresis by the addition of alkali metal salts to the buffers. J Chromatogr, 1989, 478: 63–70

    CAS  Google Scholar 

  4. Zhang H, Li X F, Le X C. Tunable aptamer capillary electrophoresis and its application to protein analysis. J Am Chem Soc, 2008, 130: 34–35

    Article  CAS  Google Scholar 

  5. Tseng W L, Lin Y W, Chang H T. Improved separation of microhet-erogeneities and isoforms of proteins by capillary electrophoresis using segmental filling with SDS and PEO in the background electrolyte. Anal Chem, 2002, 74: 4828–4834

    Article  CAS  Google Scholar 

  6. Gilges M, Kleemiss M H, Schomburg G. Capillary zone electrophoresis separations of basic and acidic proteins using poly(vinyl alcohol) coatings in fused silica capillaries. Anal Chem, 1994, 66: 2038–2046

    Article  CAS  Google Scholar 

  7. Lu J J, Liu S, Pu Q. Replaceable cross-linked polyacrylamide for high performance separation of proteins. J Proteome Res, 2005, 4: 1012–1016

    Article  CAS  Google Scholar 

  8. Sanzgiri R D, McKinnon T A, Cooper B T. Intrinsic charge ladders of a monoclonal antibody in hydroxypropylcellulose-coated capillaries. Analyst, 2006, 131: 1034–1043

    Article  CAS  Google Scholar 

  9. Spanila M, Pazourek J, Havel J. Electroosmotic flow changes due to interactions of background electrolyte counter-ions with polyethyle-neimine coating in capillary zone electrophoresis of proteins. J Sep Sci, 2006, 29: 2234–2240

    Article  CAS  Google Scholar 

  10. Yu C J, Tseng W L. Online concentration and separation of basic proteins using a cationic polyelectrolyte in the presence of reversed electroosmotic flow. Electrophoresis, 2006, 27: 3569–3577

    Article  CAS  Google Scholar 

  11. Chiu R W, Jimenez J C, Monnig C A. High molecular weight polyar-ginine as a capillary coating for separation of cationic proteins by cap-illary electrophoresis. Anal Chim Acta, 1995, 307: 193–201

    Article  CAS  Google Scholar 

  12. Huang X J, Wang Q Q, Huang B L. Preparation and evaluation of stable coating for capillary electrophoresis using coupled chitosan as coated modifier. Talanta, 2006, 69: 463–468

    Article  CAS  Google Scholar 

  13. Lin C Y, Yu C J, Chen Y M, Chang H C, Tseng W L. Simultaneous separation of anionic and cationic proteins by capillary electrophoresis using high concentration of poly(diallyldimethylammonium chloride) as an additive. J Chromatogr A, 2007, 1165: 219–225

    Article  CAS  Google Scholar 

  14. Cifuentes A, Rodriguez M A, Garcia-Montelongo F J. Separation of basic proteins in free solution capillary electrophoresis: Effect of addi-tive, temperature and voltage. J Chromatogr A, 1996, 742: 257–266

    Article  CAS  Google Scholar 

  15. Strege M A, Lagu A L. Micellar electrokinetic capillary chromatography of proteins. Anal Biochem, 1993, 210: 402–410

    Article  CAS  Google Scholar 

  16. Liu Q, Yang Y, Huang Y, Pan C, Nie Z, Yao S. Separation of acidic and basic proteins by capillary electrophoresis with CTAB additive and its applications in peptide and protein profiling. Electrophoresis, in press

  17. Melanson J E, Baryla N E, Lucy C A. Double-chained surfactants for semipermanent wall coatings in capillary electrophoresis. Anal Chem, 2000, 72: 4110–4114

    Article  CAS  Google Scholar 

  18. Towns J K, Regnier F E. Capillary electrophoretic separations of proteins using nonionic surfactant coatings. Anal Chem, 1991, 63: 1126–1132

    Article  CAS  Google Scholar 

  19. Baryla N E, Lucy C A. Simultaneous separation of cationic and anionic proteins using zwitterionic surfactants in capillary electrophoresis. Anal Chem, 2000, 72: 2280–2284

    Article  CAS  Google Scholar 

  20. Emmer A, Roeraade J. Wall deactivation with fluorosurfactants for capillary electrophoretic analysis of biomolecules. Electrophoresis, 2001, 22: 660–665

    Article  CAS  Google Scholar 

  21. Wang C, Lucy C A. Oligomerized phospholipid bilayers as semipermanent coatings in capillary electrophoresis. Anal Chem, 2005, 77: 2015–2021

    Article  CAS  Google Scholar 

  22. Gulcev M D, Lucy C A. Factors affecting the behavior and effective-ness of phospholipid bilayer coatings for capillary electrophoretic separations of basic proteins. Anal Chem, 2008, 80: 1806–1812

    Article  CAS  Google Scholar 

  23. Menger F M, Keiper J S. Gemini surfactants. Angew Chem Int Ed, 2000, 39: 1906–1920

    Article  Google Scholar 

  24. Zana R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review. Adv Colloid Interface Sci, 2002, 97: 203–251

    Article  Google Scholar 

  25. Zana R. Dimeric (gemini) surfactants: Effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci, 2002, 248: 203–220

    Article  CAS  Google Scholar 

  26. Liu Q, Li Y, Tang F, Ding L, Yao S. Cationic gemini surfactant as dynamic coating in CE for the control of EOF and wall adsorption. Electrophoresis, 2007, 28: 2275–2282

    Article  CAS  Google Scholar 

  27. Liu Q, Yuan J, Li Y, Yao S. Long-chained gemini surfactants for semipermanent wall coatings in capillary electrophoresis of proteins. Electrophoresis, 2008, 29: 871–879

    Article  Google Scholar 

  28. Liu Q, Guo M, Nie Z, Yuan J, Tan J, Yao S. Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Langmuir, 2008, 24: 1595–1599

    Article  CAS  Google Scholar 

  29. Pumera M, Wang J, Grushka E, Polsky R. Gold nanoparticle-enhanced microchip capillary electrophoresis. Anal Chem, 2001, 73: 5625–5628

    Article  CAS  Google Scholar 

  30. Huang M F, Kuo Y C, Huang C C, Chang H T. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis. Anal Chem, 2004, 76: 192–196

    Article  CAS  Google Scholar 

  31. Yu C J, Su C L, Tseng W L. Separation of acidic and basic proteins by nanoparticle-filled capillary electrophoresis. Anal Chem, 2006, 78: 8004–8010

    Article  CAS  Google Scholar 

  32. Zana R, Benrraou M, Rueff R. Al-kanediyl-α,ω-bis (dimethylalk-ylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir, 1991, 7: 1072–1075

    Article  CAS  Google Scholar 

  33. Gas B, Kenndler E. System zones in capillary zone electrophoresis. Electrophoresis, 2004, 25: 3901–3912

    Article  CAS  Google Scholar 

  34. Melanson J E, Baryla N E, Lucy C A. Dynamic capillary coatings for electroosmotic flow control in capillary electrophoresis. Trends Anal Chem, 2001, 20: 365–374

    Article  CAS  Google Scholar 

  35. Lucy C A, MacDonald A M, Gulcev M D. Non-covalent capillary coatings for protein separations in capillary electrophoresis. J Chromatogr A, 2008, 1184: 81–105

    CAS  Google Scholar 

  36. Zana R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants 10. Behavior in aqueous solution at concentrations below the critical micellization concentration: An electrical conductivity study. J Colloid Interface Sci, 2002, 246: 182–190

    Article  CAS  Google Scholar 

  37. Atkin R, Craig V S J, Wanless E J, Biggs S. Adsorption of 12-s-12 gemini surfactants at the silica-aqueous solution interface. J Phys Chem B, 2003, 107: 2978–2685

    Article  CAS  Google Scholar 

  38. Danino D, Talmon Y, Zana R. Al-kanediyl-α,ω-bis (dimethylal-kylammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions. Langmuir, 1995, 11: 1448–1456

    Article  CAS  Google Scholar 

  39. Baryla N E, Melanson J E, McDermott M T, Lucy C A. Characterization of surfactant coatings in capillary electrophoresis by atomic force microscopy. Anal Chem, 2001, 73: 4558–4565

    Article  CAS  Google Scholar 

  40. Roll D, Malicka J, Gryczynski I, Gryczynski Z, Lakowicz J R. Metallic colloid wavelength-ratiometric scattering sensors. Anal Chem, 2003, 75: 3440–3445

    Article  CAS  Google Scholar 

  41. Zhu T, Vasilev K, Kreiter M, Mittler S, Knoll W. Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir, 2003, 19: 9518–9525

    Article  CAS  Google Scholar 

  42. Fleming D A, Williams M E. Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir, 2004, 20: 3021–3023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouZhuo Yao.

Additional information

Supported by the National Natural Science Foundation of China (No. 20575019) and the National Basic Research Program of China (973 Program, No. 2006CB504701)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Li, Y., Yang, Y. et al. Separation of acidic and basic proteins by capillary electrophoresis using gemini surfactants and gemini-capped nanoparticles as buffer additives. Sci. China Ser. B-Chem. 52, 1666–1676 (2009). https://doi.org/10.1007/s11426-009-0166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0166-0

Keywords

Navigation