Skip to main content
Log in

Synthesis, thermal property and hydrolytic degradation of a novel star-shaped hexa[p-(carbonylglycinomethylester)phenoxy]cyclotriphosphazene

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A novel star-shaped cyclotriphosphazene substituted by glycinomethylesterphenoxy and its intermediates are synthesized from hexachlorocyclotriphosphazene (HCCP). The structures are characterized by 1H NMR, 13C NMR, 31P NMR, FTIR and elemental analysis. Their thermal properties are clarified by thermogravimetric analysis (TGA), differential scanning calorimentry (DSC) and FTIR, while hydrolytic degradation behaviour is studied with UV-vis spectrophotometer and by measuring the weight loss, and the phosphorus content of residue. According to hydrolysis behaviour of hexa[p-(carbonylglycinomethylester)phenoxy]cyclotriphosphazene (HGPCP) under different conditions, it is easy to hydrolyze in hydrochloric acid (pH 1.0) than in phosphate buffer (pH 7.4) at 37°C. And the sample hydrolytic degradation still remains at the stage of side groups’ break. The TGA data show that the thermal stability of the hexa[p-(aldehyde)phenoxy]cyclotriphosphazene (HAPCP), hexa[p-(carboxyl) phenoxy]cyclotriphosphazene (HCPCP) and HGPCP is so high that their char residues are 75%, 47% and 47% at 800°C, respectively, probably due to cross-linking between molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mario G, Roberta B, Roger D J. Fluorinated polyphosphazenes: A survey. J Inorg Organomet Polym, 2004, 14(1): 1–23

    Article  Google Scholar 

  2. DAL H, Suzen Y. Phosphorus-nitrogen compounds: Synthesis and spectral investigations on new spiro-cyclic phosphazene derivatives. Spectrochim Acta, Part A, 2007, 67(5): 1392–1397

    Article  Google Scholar 

  3. Kupka T, Pasterny K, Pasterna G, Brandt K. From planar to nonplanar cyclotriphosphazenes. J Mol Struct, 2008, 866(1–3): 21–26

    CAS  Google Scholar 

  4. Zhu Y, Huang X B, Fu J W, Wang G, Tang X Z. Morphology control between microspheres and nanofibers by solvent-induced approach based on crosslinked phosphazene-containing materials. Mater Sci Eng, B, 2008, 153(1–3): 62–65

    Article  CAS  Google Scholar 

  5. Fei S T, Wood R M, David K L, David A S, Chang H L, Allcock H R. Inorganic-organic hybrid polymers with pendent sulfonated cyclic phosphazene side groups as potential proton conductive materials for direct methanol fuel cells. J Membr Sci, 2008, 320(1–2): 206–214

    Article  CAS  Google Scholar 

  6. Allcock H R, Wood R M. Design and synthesis of ion-conductive polyphosphazenes for fuel cell applications: review. J Polym Sci, Part B: Polym Phys, 2006, 44(16): 2358–2368

    Article  CAS  Google Scholar 

  7. Giavaresi G, Tschon M, Borsari V, Daly J H, Liggat J J, Fini M, Bonazzi V, Nicolini A, Carpi A, Morra M, Cassinelli C, Giardino R. New polymers for drug delivery systems in orthopaedics: In vivo biocompatibility evaluation. Biomed Pharmacother, 2004, 58(8): 411–417

    CAS  Google Scholar 

  8. Jun Y J, Kim J I, Jun M J, Sohn Y S. Selective tumor targeting by enhanced permeability and retention effect. synthesis and antitumor activity of polyphosphazene-platinum (-) conjugates. J Inorg Biochem, 2005, 99(8): 1593–1601

    Article  CAS  Google Scholar 

  9. Yu J Y, Jun Y J, Jang S H, Lee H J, Sohn Y S. Nanoparticulate platinum (-) anticancer drug: Synthesis and characterization of amphiphilic cyclotriphosphazene-platinum (-) conjugates. J Inorg Biochem, 2007, 101(11–12): 1931–1936

    Article  CAS  Google Scholar 

  10. Ozturk A I, Yilmaz O, Kirbag S, Arslan M. The synthesis and characterization of cycloalkoxy-linear phosphazenes. Cell Biochem Funct, 2003, 178(10): 2097–2105

    CAS  Google Scholar 

  11. George M, Ponn B, Henry S, Hugh T, Richard Y, Bryan R, Andrianov A K, Babiuk L A. Poly[di(sodium carboxylatoethylphenoxy) phosphazene] (pcep) is a potent enhancer of mixed th1/th2 immune responses in mice immunized with influenza virus antigens. Vaccine, 2007, 25(7): 1204–1213

    Article  Google Scholar 

  12. Yilmaz O, Aslan F, Ozturk A I, Vanli N, Kirbag S, Arslan M. Antimicrobial and biological effects of n-diphenylphosphoryl-p-triphenylmonophosphazene-II and di(o-tolyl)phosphoryl-p-tri(o-tolyl)monophosphazene-III on bacterial and yeast cells. Bioorg Chem, 2002, 30(5): 303–314

    Article  CAS  Google Scholar 

  13. Liu Y Q, Zhao G Z. Study on the properties of microcapsulated chlorocyclophosphazene polypropylene composites. Chin J Chem Eng, 2007, 15(3): 429–432

    Article  CAS  Google Scholar 

  14. Allcock H R. New approaches to hybrid polymers that contain phosphazene rings. J Inorg Organomet Polym, 2007, 17(2): 349–359

    Article  CAS  Google Scholar 

  15. El-Amin S F, Kwon M S, Starnes T, Allcock H R, Laurencin C T. The biocompatibility of biodegradable glycine containing polyphosphazenes: A comparative study in bone. J Inorg Organomet Polym, 2006, 16(4): 387–396

    Article  CAS  Google Scholar 

  16. Jin K K, Udaya S T, Rita S, Youn S S. A macromolecular prodrug of doxorubicin conjugated to a biodegradable cyclotriphosphazene bearing a tetrapeptide. Bioorg Med Chem Lett, 2005, 15(15): 3576–3579

    Article  Google Scholar 

  17. Wang L, Ye Y, Zhong S B, Zhao Y F. Polydentate cyclotriphosphazene ligands: Design, synthesis and bioactivity. Chin Chem Lett, 2009, 20(1): 58–61

    Article  Google Scholar 

  18. Menemse G, Altug G. Synthesis, characterization, in vitro degradation and cytotoxicity of poly[bis(ethyl 4-aminobutyro)phosphazene]. React Funct Polym, 2002, 52(2): 71–80

    Article  Google Scholar 

  19. Cui Y J, Zhao X, Tang Xi Z, Luo Y P. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix. Biomaterials, 2004, 25(3): 451–457

    Article  CAS  Google Scholar 

  20. Yin L, Huang X B, Tang X Z. Synthesis, characterization and hydrolytic degradation of linear and crosslinked poly[(glycino ethyl ester)(allyl amino)phosphazene]. Polym Degrad Stab, 2007, 92(5): 795–801

    Article  CAS  Google Scholar 

  21. Udaya S T, Sun H M, Hye Y K, Yong J J, Byong M K, Yong M P, Byeongmoon J, Youn S S. Thermosensitive and biocompatible cyclotriphosphazene micelles. J Control Release, 2007, 119(1): 34–40

    Article  Google Scholar 

  22. Fantin G, Fogagnolo M, Medici A, Pedrini P, Gleria M, Minto F. Photosensitive phosphazene substrates: Synthesis and characterization. Gazz Chim Ital, 1997, 127(5): 287–292

    CAS  Google Scholar 

  23. Yuan W Z, Tang X Z, Huang X B, Zheng S X. Synthesis, characterization and thermal properties of hexaarmed star-shaped poly(ε-caprolactone)-b-poly(D,L-lactide-co-glycolide) initiated with hydroxyl-terminated cyclotriphosphazene. Polymer, 2005, 46(5): 1701–1707

    Article  CAS  Google Scholar 

  24. Yin R H, Xue L G, Yu Z Z. Determination of phosphorous content in electroless ni-p coating by quinoline phosphomolybdate gravimetric method (in Chinese). Mater Protection, 2007, 40(4): 67–69

    CAS  Google Scholar 

  25. Allcock H R, Fuller H J, Matsumera K. Hydrolysis pathways for aminophosphazenes. Inorg Chem, 1982, 21: 515–521

    Article  CAS  Google Scholar 

  26. Allcock H R, Pucher S R, Scopelianos A G. Poly [(amino acid ester) phosphazenes]: Synthesis, crystallinity and hydrolytic sensitivity in solution and solid state. Macromolecules, 1994, 27: 1071–1075

    Article  CAS  Google Scholar 

  27. Cui Y J, Ma X M, Tang X Z, Luo Y P. Synthesis, characterization, and thermal stability of star-shaped poly(ε-caprolactone) with phosphazene core. Eur Polym J, 2004, 40(2): 299–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20774016), and Heilongjiang Science Fund for Distinguished Young Scholars (Grant No. JC 04-06)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bing, B., Li, B. Synthesis, thermal property and hydrolytic degradation of a novel star-shaped hexa[p-(carbonylglycinomethylester)phenoxy]cyclotriphosphazene. Sci. China Ser. B-Chem. 52, 2186–2194 (2009). https://doi.org/10.1007/s11426-009-0159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0159-z

Keywords

Navigation