Skip to main content
Log in

Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalytic response to visible light

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current, deposition time and electrolyte concentration. It was revealed, from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile, that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs, under a visible light irradiation, CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity, which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A, Rao T N, Trky D A. Titanium dioxide photocatalysis. J Photochem Photobiol C, 2000, 1: 1–21

    Article  CAS  Google Scholar 

  2. Fujishima A, Zhang X. Titanium dioxide photocatalysis: Present situation and future approaches. C R Chim, 2006, 9: 750–760

    CAS  Google Scholar 

  3. Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res, 2001, 16: 3331–3334

    Article  CAS  Google Scholar 

  4. Macák J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed, 2005, 44: 2100–2102

    Article  Google Scholar 

  5. Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem, 2007, 17: 1451–1457

    Article  CAS  Google Scholar 

  6. Zhuang H F, Lin C J, Lai Y K, Sun L, Li J. Some critical structure factors of titanium oxiden anotube array in its photocatalytic activity. Environ Sci Technol, 2007, 41: 4735–4740

    Article  CAS  Google Scholar 

  7. Macák J M, Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta, 2006, 52: 1258–1264

    Article  Google Scholar 

  8. Prakasam H E, Shankar K, Paulose M, Varghese O K, Grimes C A. A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C, 2007, 111: 7235–7241

    Article  CAS  Google Scholar 

  9. Kaneco S, Chen Y S, Westerhoff P, Crittenden J C. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Mater, 2007, 56: 373–376

    Article  CAS  Google Scholar 

  10. Quan X, Yang S G, Ruan X L, Zhao H M. Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol, 2005, 39: 3770–3775

    Article  CAS  Google Scholar 

  11. Macák J M, Zlamal M, Krysa J, Schmuki P. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small, 2007, 3(2): 300–304

    Article  Google Scholar 

  12. Varghese O K, Grimes C A. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. Sol Energy Mater Sol Cells, 2008, 92: 374–384

    Article  CAS  Google Scholar 

  13. Lai Y K, Sun L, Chen Y C, Zhuang H F, Lin C J, Chin J W. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J Electrochem Soc, 2006, 153: D123–D127

    Article  CAS  Google Scholar 

  14. Chen Y S, Crittenden J C, Hackney S, Sutter L, Hand D W. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environ Sci Technol, 2005, 39: 1201–1208

    Article  CAS  Google Scholar 

  15. Xie Y B, Zhou L M, Huang H T. Enhanced photoelectrochemical current response of titania nanotube array. Mater Lett, 2006, 60: 3558–3560

    Article  CAS  Google Scholar 

  16. Ghicov A, Macák J M, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett, 2006, 6(5): 1080–1082

    Article  CAS  Google Scholar 

  17. Paramasivam I, Macák J M, Ghicov A, Schmuki P. Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem Phys Lett, 2007, 445: 233–237

    Article  CAS  Google Scholar 

  18. Ong K G, Varghese O K, Mor G K, Shankar K, Grimes C A. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption. Sol Energy Mater Sol Cells, 2007, 91: 250–257

    Article  CAS  Google Scholar 

  19. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc, 2008, 130(12): 4007–4015

    Article  CAS  Google Scholar 

  20. Yin Y X, Jin Z G, Hou F. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology, 2007, 18: No. 495608

    Google Scholar 

  21. Xiao M W, Wang L S, Wu Y D, Huang X J, Dang Z. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology, 2008, 19: No. 015706

    Google Scholar 

  22. Chen S G, Paulose M, Ruan C, Mor, G K, Varghese O K, Kouzoudis D, Grimes C A. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol A, 2006, 177: 177–184

    Article  CAS  Google Scholar 

  23. Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc, 2008, 130(4): 1124–1125

    Article  CAS  Google Scholar 

  24. Xu D S, Xu Y J, Chen D P, Guo G L, Gui L L, Tang Y Q. Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates. Chem Phys Lett, 2000, 325: 340–344

    Article  CAS  Google Scholar 

  25. Peng T Y, Yang H P, Dai K, Pu X L, Hirao K. Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates. Chem Phys Lett, 2003, 379: 432–436

    Article  CAS  Google Scholar 

  26. Routkevitch D, Bigioni T, Moskovits M, Xu J M. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem, 1996, 100: 14037–14047

    Article  CAS  Google Scholar 

  27. Barka N, Qourzal S, Assabbane A, Nounahb A, Ait-lchou Y. Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. J Photochem Photobio A, 2008, 195: 346–351

    Article  CAS  Google Scholar 

  28. Kundu M, Khosravi A A, Kulkarni S K, Singh P. Synthesis and study of organically capped ultra small clusters of cadmium sulphite. J Mater Sci, 1997, 32: 245–258

    Article  CAS  Google Scholar 

  29. Bandyopadhyay K, Mayya K S, Vijayamohanan K, Sastry M. Spontaneously organized molecular assembly of an aromatic organic disulfide on silver/platinum alloy surfaces: An angle dependent X-ray photoemission investigation. J Electron Spectrosc Relat Phenom, 1997, 87: 101–107

    Article  CAS  Google Scholar 

  30. Ristova M, Ristov M. XPS profile analysis on CdS thin film modified with Ag by an ion exchange. Appl Surf Sci, 2001, 181: 68–77

    Article  CAS  Google Scholar 

  31. Kokai J, Rakhshani A E. Photocurrent spectroscopy of solution grown CdS films annealed in CdCl2 vapour. J Phys D Appl Phys, 2004, 37: 1970–1975

    Article  Google Scholar 

  32. Hidaka H, Nagaoka H, Nohara K, Shimura T, Horikoshi S, Zhao J, Serpone N. A mechanistic study of the photoelectrochemical oxidation of organic compounds on a TiO2/TCO particulate film electrode assembly. J Photochem Photobiol A, 1996, 98: 73–78

    Article  CAS  Google Scholar 

  33. Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69–96

    Article  CAS  Google Scholar 

  34. Wu T X, Liu G M, Zhao J C. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B, 1998, 102: 5845–5851

    Article  CAS  Google Scholar 

  35. Bauer C, Jacques P, Kalt A. Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface. Chem Phys Lett, 1999, 307: 397–406

    Article  CAS  Google Scholar 

  36. Sun Z Y, Du J H, Chen H S, Gong W Q. FTIR study of nano-iron oxyhydroxides’ decolorationonthe azo dye. Spectrosc Spectral Anal, 2006, 26: 1226–1229

    CAS  Google Scholar 

  37. Li J Y, Ma W H, Lei P X, Zhao J C. Detection of intermediates in the TiO2-assisted photodegradation of Rhodamine B under visible light irradiation. J Environ Sci, 2007, 19: 892–896

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Sun or ChangJian Lin.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50571085) and the Natural Science Foundation of Fujian Province (Grant No. U0750015) and R&D Program of Fujian (Grant No. 2007H0031) and that of Xiamen (Grant No. 3502Z20073004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Sun, L., Xie, K. et al. Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalytic response to visible light. Sci. China Ser. B-Chem. 52, 2148–2155 (2009). https://doi.org/10.1007/s11426-009-0157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0157-1

Keywords

Navigation