Skip to main content
Log in

Theoretical study of deactivation and isomerization pathways of 1,2-dithiete in excited electronic states

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The potential energy surface crossings for 1,2-dithiete have been investigated using the complete active space self-consistent field (CASSCF) method and simple group theory. Using the full Pauli-Breit spin-orbit coupling (SOC) operator \( (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} _{SO} ) \) which consists of the one-electron \( (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} _{SO1} ) \) and two-electron \( (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{H} _{SO2} ) \) terms, we estimate the strengths of the SOC (198.37 cm−1 when symmetry is imposed, and 211.35 cm−1 with no symmetry constraints), which plays an essential role in the spin transitions between different spin states. The calculations show that the photolysis of 1,3-dithiol-2-one leads to the formation of trans-dithioglyoxal (trans-MinS0) as a primary product which subsequently gives a secondary product identified as thiolthioketene. Our calculated results are in close agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Celani P, Robb M A, Garavelli M, Bernardi F, Olivucci M. Geometry optimisation on a hypersphere. Application to finding reaction paths from a conical intersection. Chem Phys Lett, 1995, 243: 1–8

    Article  CAS  Google Scholar 

  2. Reguero M, Olivucci M, Bernandi F, Robb M A. Excited-state potential surface crossings in acrolein: A model for understanding the photochemistry and photophysics of α,β-enones. J Am Chem Soc, 1994, 116: 2103–2114

    Article  CAS  Google Scholar 

  3. Celani P, Ottani S, Olivucci M, Bernardi F, Robb M A. What happens during the picosecond lifetime of 2A1 cyclohexa-1,3-diene? A CAS-SCF study of the cyclohexadiene/hexatriene photochemical interconversion. J Am Chem Soc, 1994, 116: 10141–10151

    Article  CAS  Google Scholar 

  4. Diehl F, Meyer H, Schweig A, Hess B A, Fabian J. 1,2-Dithiete is more stable than 1,2-dithioglyoxal as evidenced by a combined experimental and theoretical IR spectroscopic approach. J Am Chem Soc, 1989, 111: 7651–7653

    Article  CAS  Google Scholar 

  5. Schulz R, Schweig A, Hartke K, Koester J. Theory and application of photoelectron spectroscopy. 100. Variable-temperature photoelectron spectral study of 1,3-dithiol-2-one and 4,5-disubstituted 1,3-dithiol-2-ones. Thermal generation of 1,2-dithiete, 3,4-disubstituted 1,2-dithietes, and dialkyl tetrathiooxalates. J Am Chem Soc, 1983, 105: 4519–4528

    Article  CAS  Google Scholar 

  6. Vijay D, Sastry G N. Peculiar basis set dependence of the energetics of C2S2H2 isomers. In search of adequate and affordable basis set for routine calculations. J Mol Struct (Theochem), 2005, 732: 71–78

    Article  CAS  Google Scholar 

  7. Mucha M, Pagacz M, Mielke Z. Infrared detection of dithioglyoxal from photolysis of 1,3-dithiol-2-one in solid argon and nitrogen. Chem Phys Lett, 2008, 458: 39–43

    Article  CAS  Google Scholar 

  8. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda, Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision B, 05. Gaussian Inc, Pittsburgh, PA, 2003

    Google Scholar 

  9. Bearpark M J, Mebel M A. A direct method for the location of the lowest energy point on a potential surface crossing. Chem Phys Lett, 1994, 223: 269–274

    Article  CAS  Google Scholar 

  10. Ragazos I N, Robb M A, Bernardi M. Optimization and characterization of the lowest energy point on a conical intersection using an MC-SCF Lagrangian. Chem Phys Lett, 1992, 197: 217–223

    Article  CAS  Google Scholar 

  11. He H Y, Fang W H A. CASSCF/MR-CI study toward the understanding of wavelength-dependent and geometrically memorized photodissociation of formic acid. J Am Chem Soc, 2003, 125: 16139–16147

    Article  CAS  Google Scholar 

  12. Danovich D, Marian C M, Neuheuser T, Peyerimhoff S D, Shaik S. Spin-orbit coupling patterns induced by twist and pyramidalization modes in C2H4: A quantitative study and a qualitative analysis. J Phys Chem A, 1998, 102: 5923–5936

    Article  CAS  Google Scholar 

  13. Isobe H, Yamanaka S, Kuramitsu S, Yamaguchi K. Regulation mechanism of spin-orbit coupling in charge-transfer-induced luminescence of imidazopyrazinone derivatives. J Am Chem Soc, 2008, 130: 132–149

    Article  CAS  Google Scholar 

  14. Conti I, Marchioni F, Credi A, Orlandi G, Rosini G, Garavelli M. Cyclohexenylphenyldiazene: A simple surrogate of the azobenzene photochromic unit. J Am Chem Soc, 2007, 129: 3198–3210

    Article  CAS  Google Scholar 

  15. Chen H, Li S H. Theoretical study on the photolysis mechanism of 2,3-diazabicyclo[2.2.2]oct-2-ene. J Am Chem Soc, 2005, 127: 13190–13199

    Article  CAS  Google Scholar 

  16. Shaik S. Triplet [2+2] cycloadditions. Spin-inversion control of stereoselectivity. J Am Chem Soc, 1979, 101: 3184–3196

    Article  CAS  Google Scholar 

  17. Danovich D, Shaik S. Spin-orbit coupling in the oxidative activation of H—H by FeO+. Selection rules and reactivity effects. J Am Chem Soc, 1997, 119: 1773–1786

    Article  CAS  Google Scholar 

  18. Su M D. The role of spin-orbit coupling and symmetry in photochemical rearrangements of unsaturated cyclic ketones. Chem Phys, 1996, 205: 277–308

    Article  CAS  Google Scholar 

  19. Turro N J. Modern Molecular Photochemistry. Sausalito: University Science Books, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingLing Lv.

Additional information

Supported by the “QingLan” Talent Engineering Funds by Tianshui Normal University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, L., Yang, S., Wang, X. et al. Theoretical study of deactivation and isomerization pathways of 1,2-dithiete in excited electronic states. Sci. China Ser. B-Chem. 52, 1176–1185 (2009). https://doi.org/10.1007/s11426-009-0138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0138-4

Keywords

Navigation