Skip to main content
Log in

Theoretical studies on the binding energy of β-sheet models

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

In this paper, B3LYP and MP2 methods are used to investigate the binding energy of seventeen antiparallel and parallel β-sheet models. The results indicate that the binding energy obtained from B3LYP calculations is weaker than that obtained from MP2 calculations but the relative binding energy yielded by B3LYP is almost the same as that by MP2. For the antiparallel β-sheets in which two N-H⋯O=C hydrogen bonds can form either a large hydrogen-bonded ring or a small hydrogen-bonded ring, the binding energy increases obviously when one large ring unit is added, whereas it only changes slightly when one small ring unit is added because of the secondary electrostatic repulsive interaction existing in the small ring unit which is estimated to be about 20 kJ/mol. For the parallel β-sheet models, the binding energy increases almost exactly linearly with the increase of the chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia-Viloca M, Gao J, Karplus M, Truhlar D G. How enzymes works: Analysis by modern rate theory and computer simulations. Science, 2004, 303: 186–195

    Article  CAS  Google Scholar 

  2. Zhao Y L, Wu Y D. A theoretical study of β-sheet models: Is the formation of hydrogen-bond networks cooperative? J Am Chem Soc, 2002, 124: 1570–1571

    Article  CAS  Google Scholar 

  3. Viswanathan R, Asensio A, Dannenberg J J. Cooperative hydrogen- bonding in models of antiparallel β-sheets. J Phys Chem A, 2004, 108: 9205–9212

    Article  CAS  Google Scholar 

  4. Chen Y F, Dannenberg J J. Cooperative 4-pyridone H-bonds with extraordinary stability. A DFT molecular orbital study. J Am Chem Soc, 2006, 128: 8100–8101

    Article  CAS  Google Scholar 

  5. Scheiner S. Contributions of NH⋯O and CH⋯O hydrogen bonds to the stability of β-sheets in proteins. J Phys Chem B, 2006, 110: 18670–18679

    Article  CAS  Google Scholar 

  6. Levin S, Nowick J S. An artificial β-sheet that dimerizes through parallel β-sheet interactions. J Am Chem Soc, 2007, 129: 13043–13048

    Article  CAS  Google Scholar 

  7. Wang Z X, Wu C, Lei H X, Duan Y. Accurate ab initio study on the hydrogen-bond pairs in protein secondary structures. J Chem Theory Comput, 2007, 3: 1527–1537

    Article  CAS  Google Scholar 

  8. Sipe J D. Amyloidosis. Annu Rev Biochem, 1992, 61: 947–975

    Article  CAS  Google Scholar 

  9. Zhou J M. Protein misfolding and disease. Prog Biochem Biophys, 2000, 27: 579–584

    CAS  Google Scholar 

  10. Prusiner S B. Prion disease and the BSE crisis. Science, 1997, 278: 245–251

    Article  CAS  Google Scholar 

  11. Collinge J. Prion disease of humans and animals: Their causes and molecular bairs. Annu Rev Neurosci, 2001, 24: 519–550

    Article  CAS  Google Scholar 

  12. Petkova T A, Ishii Y, Balbach J J, Antzutkin O N, Leapman R D, Delaglio F, Tycko R. A structural model for Alaheimers’s β-armyoid fibrils based on experimental constrains from solid state NMR. Proc Natl Acad Sic USA, 2002, 99: 16742–16747

    Article  CAS  Google Scholar 

  13. Wu Y D, Zhao Y L. A theoretical study on the origin of cooperativity in the formation of 310- and α-helices. J Am Chem Soc, 2001, 123: 5313–5319

    Article  CAS  Google Scholar 

  14. Lin J Q, Luo S W, Wu Y D. Theoretical study of sheets formed by β-peptides. J Comput Chem, 2002, 23: 1551–1558

    Article  CAS  Google Scholar 

  15. Jiang L, Lai L H. CH⋯O hydrogen bonds at protein-protein interfaces. J Biol Chem, 2002, 277: 37732–37740

    Article  CAS  Google Scholar 

  16. Simon S, Duran M, Dannenberg J J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys, 1996, 105: 11024–11031

    Article  CAS  Google Scholar 

  17. Boys S F, Bernardi F. Calculations of small molecular interactions by differences of separate total energy. Some procedures with reduced errors. Mol Phys, 1970, 19: 553–556

    Article  CAS  Google Scholar 

  18. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A D, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chem W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 03; Pittsburgh: Gaussian Inc, 2003

    Google Scholar 

  19. Chin W, Piuzzi F, Dimicoli I, Mons M. Probing the competition between secondary structures and local preferences in gas phase isolated peptide backbones. Phys Chem Chem Phys, 2006, 8: 1033–1048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangSheng Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20573049 & 20633050) and the Research Fund of the Department of Education of Liaoning Province (Grant Nos. 2007T091 & 20060469)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Wang, C. Theoretical studies on the binding energy of β-sheet models. Sci. China Ser. B-Chem. 52, 2243–2248 (2009). https://doi.org/10.1007/s11426-009-0122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0122-z

Keywords

Navigation