Skip to main content
Log in

Study of caffeine binding to human serum albumin using optical spectroscopic methods

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The binding of caffeine to human serum albumin (HSA) under physiological conditions has been studied by the methods of fluorescence, UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant K b were measured by the fluorescence quenching method and the thermodynamic parameters ΔH, ΔG, ΔS were calculated. The results indicate that the binding is mainly enthalpy-driven, with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Förster theory of non-radiative energy transfer. Synchronous fluorescence, CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barone J J, Roberts H R. Caffeine consumption. Food Chem Toxicol, 1996, 34: 119–129

    Article  CAS  Google Scholar 

  2. Lieberman H R, Wurtman R J, Garfield G S, Roberts C, Coviella I L G. The effects of low doses of caffeine on human performance and mood. Psychopharmacology, 1987, 92: 308–312

    Article  CAS  Google Scholar 

  3. Jarvis M J. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology, 1993, 110: 45–52

    Article  CAS  Google Scholar 

  4. Fitzgerald G K, Axe M J, Snyder-Mackler L. The Efficacy of perturbation training in nonoperative anterior cruciate ligament rehabilitation programs for physically active individuals. Phys Ther, 2000, 80: 128–140

    CAS  Google Scholar 

  5. La Vecchia C, Ferraroni M, Negri E, D’Avanzo, B. Decarli A, Levi F, Franceschi S. Coffee consumption and digestive tract cancers. Cancer Res, 1989, 49: 1049–1051

    Google Scholar 

  6. Joesoef M R, Beral V, Rolfs R T, Aral S O, Cramer D W. Are caffeinated beverages risk factors for delayed conception? Lancet, 1990, 335: 136–137

    Article  CAS  Google Scholar 

  7. Pedersen A O, Mensberg K L, Kragh-Hansen U. Effects of ionic strength and pH on the binding of medium-chain fatty acids to human serum albumin. Eur J Biochem, 1995, 233: 395–405

    Article  CAS  Google Scholar 

  8. Curry S, Mandelkow H, Brick P, Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol, 1998, 5: 827–835

    Article  CAS  Google Scholar 

  9. Bhattacharya A A, Grüne T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol, 2000, 303: 721–732

    Article  CAS  Google Scholar 

  10. He X M, Carter D C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358: 209–215

    Article  CAS  Google Scholar 

  11. Carter D C, Ho J X. Structure of serum albumin. Adv Protein Chem, 1994, 45: 153–203

    Article  CAS  Google Scholar 

  12. Carter D C, Chang B, Ho J X, Keeling K, Krishnasami Z. Preliminary crystallographic studies of four crystal forms of serum albumin. Eur J Biochem, 1994, 226: 1049–1052

    Article  CAS  Google Scholar 

  13. Perry J L, Il’ichev Y V, Kempf V R, McClendon J, Park G, Manderville R A, Ruker F, Dockal M, Simon J D. Binding of ochratoxin A derivatives to human serum albumin. J Phys Chem B, 2003, 107: 6644–6647

    Article  CAS  Google Scholar 

  14. Bian Q Q, Liu J Q, Tian J N, Hu Z D. Binding of genistein to human serum albumin demonstrated using tryptophan fluorescence quenching. Internat J Biol Macromol, 2004, 34: 27–279

    Google Scholar 

  15. Olson R E, Christ D D. Plasma protein binding of drugs. Ann Rep Med Chem, 1996, 31: 327–336

    Article  CAS  Google Scholar 

  16. Flarakos J, Morand K L, Vouros P. High-throughput solution-based medicinal library screening against human serum albumin. Anal Chem, 2005, 77: 1345–1353

    Article  CAS  Google Scholar 

  17. Lakowicz J R. Principles of Fluorescence Spectroscopy. 2nd ed. New York: Plenum Press, 1999. 237–265

    Google Scholar 

  18. Lakowicz J R, Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 1973, 12: 4161–4170

    CAS  Google Scholar 

  19. Hu Y J, Liu Y, Hou A X, Zhao R M, Qu X S, Qu S S. Studies on the interaction between rare-earth salts of heteropoly EuHSiMo10-W2O40·25H2O and bovine serum albumin (in Chinese). Acta Chimica Sinica, 2004, 62: 1519–1523

    CAS  Google Scholar 

  20. Hu Y J, Liu Y, Wang J B, Xiao X H, Qu S S. Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal, 2004, 36: 915–919

    Article  CAS  Google Scholar 

  21. Ross P D, Subramanian S. Thermodynamics of protein association reaction: forces contribution to stability. Biochemistry, 1981, 20: 3096–3102

    Article  CAS  Google Scholar 

  22. Forster T. Intermolecular energy migration and fluorescence. Ann Phys, 1948, 2: 55–75

    Article  CAS  Google Scholar 

  23. Sklar L A, Hudson B S, Simoni R D. Conjugated polyene fatty acids as fluorescent probes: Synthetic phospholipid membrane studies. Biochemistry, 1977, 16: 819–828

    Article  CAS  Google Scholar 

  24. Long C, King E J, Sperry W M. Biochemists’ Handbook. London: E & F N Spon Ltd, 1961. 84

    Google Scholar 

  25. Weiss S. Fluorescence spectroscopy of single biomolecules. Science, 1999, 283: 1676–1683

    Article  CAS  Google Scholar 

  26. Hu Y J, Liu Y, Sun T Q, Bai A M, Lu J Q, Pi Z B. Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Int J Biol Macromol, 2006, 39: 280–285

    Article  CAS  Google Scholar 

  27. Miller J N. Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc, 1979, 16: 203–208

    CAS  Google Scholar 

  28. Klajnert B, Bryszewska M. Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry, 2002, 55: 33–35

    Article  CAS  Google Scholar 

  29. Kamat B P, Seetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. J Pharm Biomed Anal, 2004, 35: 655–664

    Article  CAS  Google Scholar 

  30. Cui F L, Fan J, Li J P, Hu Z D. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorg Med Chem, 2004, 12: 151–157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Li, C., Hu, Y. et al. Study of caffeine binding to human serum albumin using optical spectroscopic methods. Sci. China Ser. B-Chem. 52, 2205–2212 (2009). https://doi.org/10.1007/s11426-009-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0114-z

Keywords

Navigation