Skip to main content
Log in

Highly luminescent ZnO and CdS nanostructures prepared by ionic liquid precursors

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The ionic liquids containing Cd and Zn, which served as the metal-chalcogenides precursors, were synthesized and reacted with Na2S to synthesize the ionic-liquid-capped semiconductors. The products were detected by XRD and TEM. The results demonstrated that the CdS was composed of 5–6 nm monodispersed nanocrystals. At the same time, the ZnO composed of 1 μm hexagonal-disk nanostructure was prepared under the same experimental condition. The difference of the morphology and structures between Zn and Cd systems was discussed by thermodynamics and crystallography. The fluorescence of as-prepared ZnO and CdS showed the excellent photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos A P. Semiconductor clusters, nanocrystals and quantum dots. Science, 1996, 271: 933–937

    Article  CAS  Google Scholar 

  2. Han M Y, Gao X H, Su J Z, Nie S M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature, 2001, 19: 631–635

    Article  CAS  Google Scholar 

  3. Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem, 1996, 100: 468–471

    Article  CAS  Google Scholar 

  4. Tessler N, Medvedev V, Kazes M, Kan S H, Banin U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science, 2002, 295: 1506–1508

    Article  Google Scholar 

  5. Steckel J S, Coe-Sullivan S, Bulovic V, Bawendi M G. 1.3 m to 1.55 m tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv Mater, 2003, 15(21): 1862–1866

    Article  CAS  Google Scholar 

  6. Bruchez M J, Moronne M, Gin P, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013–2016

    Article  CAS  Google Scholar 

  7. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016–2018

    Article  CAS  Google Scholar 

  8. Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115: 8706–8715

    Article  CAS  Google Scholar 

  9. Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Shape control of CdSe nanocrystals. Nature, 2000, 404(6773): 59–61

    Article  CAS  Google Scholar 

  10. Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor. J Am Chem Soc, 2001, 123(1): 183–184

    Article  CAS  Google Scholar 

  11. Li J J, Wang Y A, Guo W, Keay J C, Mishima T D, Johnson M B, Peng X G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc, 2003, 125(41): 12567–12575

    Article  CAS  Google Scholar 

  12. Warner J H, Tilley R D. Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Adv Mater, 2005, 17(24): 2997–3001

    Article  CAS  Google Scholar 

  13. Cheng Y, Wang Y, Bao F, Chen D. Shape control of monodisperse CdS nanocrystals: Hexagon and pyramid. J Phys Chem B, 2006, 110: 9448–9451

    Article  CAS  Google Scholar 

  14. Lodge T P. Materials science: A unique platform for materials design. Science, 2008, 321: 50–51

    Article  CAS  Google Scholar 

  15. Rogers R D, Seddon K R. Chemistry: Ionic liquids-solvents of the future? Science, 2003, 302: 792–793

    Article  Google Scholar 

  16. Davis J H, Fox P A. From curiosities to commodities: Ionic liquids begin the transition. Chem Commun, 2003, (11): 1209–1212

  17. Wasserscheid P, Keim W. Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed, 2000, 39(21): 3772–3789

    Article  CAS  Google Scholar 

  18. Li Y D, Liao H W, Ding Y, Fan Y, Zhang Y, Qian Y T. Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg Chem, 1999, 38: 1382–1387

    Article  CAS  Google Scholar 

  19. Koen B. Ionic liquid crystals. Chem Rev, 2005, 105: 4148–4204

    Article  Google Scholar 

  20. Qin Y, Song Y, Sun N J, Zhao N N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chem Mater, 2008, 20: 3965–3972

    Article  CAS  Google Scholar 

  21. Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc, 2004, 126: 3026–3027

    Article  CAS  Google Scholar 

  22. Biswasand K, Rao C N R. Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides. Chem Eur J, 2007, 13: 6123–6129

    Article  Google Scholar 

  23. Nonoguchi Y, Nakashima T, Kawai T. Size- and temperature-dependent emission properties of zinc-blende CdTe nanocrystals in ionic liquid. J Phys Chem C, 2007, 111: 11811–11815

    Article  CAS  Google Scholar 

  24. Zhu H G, Huang J F, Pan Z W, Dai S. Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors. Chem Mater, 2006, 18: 4473–4477

    Article  CAS  Google Scholar 

  25. Liu D P, Li G D, Su Y, Chen J S. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angew Chem Int Ed, 2006, 45: 7370–7373

    Article  CAS  Google Scholar 

  26. Shi E W, Zhong W Z, Hua S K, Yuan R L, Wang B G, Xia C T, Li W J. On the negative ion polyhedron coordination growth model (in Chinese). Sci China Ser E, 1998, 28: 37–45

    Google Scholar 

  27. Wang B G, Shi E W, Zhong W Z, Xia C T, Li W J, Yin Z W. Growth habits and mechanism of ZnO microcrystallites under hydrothermal conditions (in Chinese). J Chin Ceram Soc China, 1997, 25: 223–229

    CAS  Google Scholar 

  28. Hu J T. ZnO, ZnS nanomaterials preparation and properties of light-emitting (in Chinese). Dissertation for the Doctoral Degree. Hefei: University of Science and Technology University of China, 2006. 27–58

    Google Scholar 

  29. Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: A detailed pectroscopic study. J Phys Chem, 1987, 91: 3789–3798

    Article  CAS  Google Scholar 

  30. Schubnell M, Kamber I, Beaud P. Photochemistry at high temperatures: Potential of ZnO as a high temperature photocatalyst. Appl Phys A, 1997, 64: 109–113

    Article  CAS  Google Scholar 

  31. Emeline A V, Ryabchuk V K, Serpone N. Spectral dependencies of the quantum yield of photochemical processes on the surface of nano-/microparticulates of wide-band-gap metal oxides. 1. Theoretical approach. J Phys Chem B, 1999, 103: 1316–1324

    Article  CAS  Google Scholar 

  32. Xiong H M, Liu D P, Xia Y Y, Chen J S. Polyether-grafted ZnO nanoparticles with tunable and stable photoluminescence at room temperature. Chem Mater, 2005, 17: 3062–3064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiXin Wu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20871041) and the Key Project of Ministry of Education (Grant No. 208086)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, L., Xu, H., An, Y. et al. Highly luminescent ZnO and CdS nanostructures prepared by ionic liquid precursors. Sci. China Ser. B-Chem. 52, 2141–2147 (2009). https://doi.org/10.1007/s11426-009-0104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0104-1

Keywords

Navigation