Skip to main content
Log in

Alkali-hydrolysis of D-glucono-delta-lactone studied by chiral Raman and circular dichroism spectroscopies

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The alkali-hydrolysis of D-glucono-delta-lactone (GDL) was investigated by chiral Raman and circular dichroism (CD) spectroscopies in combination with density functional theory calculation. Based on the characteristic CD bands of GDL and its hydrolysis product, the dynamics of hydrolysis was studied using stopped-flow CD method. Using chiral Raman spectroscopy (CRS), the stereochemical change of GDL owing to the hydrolysis reaction was discussed on the vibrational scale. The CRS results show that the ring-opening due to hydrolysis has a great influence on the chiral structure around the carbonyl group, which was evidenced by the disappearance of the CRS band at 1735 cm 1 (C=O stretching vibrational mode). In addition, the change of positions and intensity of CRS bands was also observed, which was ascribed to the perturbation around the C2, C3, C4 and C5 carbons due to ring-opening. It is worthy to note that the stereochemistry of C2, C3, C4 and C5 had no fundamental change during the hydrolysis reaction, which was reflected in the maintenance of the signs of the CRS bands. Our results demonstrate that in comparison with CD technique, CRS may provide more detailed structural information of chiral molecules and open up new vistas of research for chiral reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenberg F, Field J B. The enzymatic hydrolysis of glucuronolactone. J Biol Chem, 1956, 222: 293–300

    CAS  Google Scholar 

  2. Pocker Y, Green E. Hydrolysis of D-glucono-delta-lactone. I. General acid-base catalysis, solvent deuterium isotope effects, and transition state characterization. J Am Chem Soc, 1973, 95: 113–119

    Article  CAS  Google Scholar 

  3. Strecker H J, Korkes S. Glucose dehydrogenase. J Biol Chem, 1952, 196: 769–784

    CAS  Google Scholar 

  4. Dybowska B E, Fujio Y. Optical analysis of glucono-delta-lactone induced soy protein gelation. J Food Eng, 1998, 36: 123–133

    Article  Google Scholar 

  5. Schwertfeger M, Buchheim W. Coagulation of skim milk under high hydrostatic pressure with acidification by glucono-delta-lactone. Int Dairy J, 1999, 9: 487–492

    Article  CAS  Google Scholar 

  6. Arévalo M J, Avalos M, Babiano R, Cabanillas A, Cintas P, Jiménez J L, Palacios J C. Optically active sugar thioamides from delta-gluconolactone. Tetrahedron: Asymmetr, 2000, 11: 1985–1995

    Article  Google Scholar 

  7. Garésio F, Kardos N, Bonnevie C, Petit S, Luche J L D-gluconolactone as a precursor to new environmentally benign tensioactive agents. Green Chem, 2000, 2: 33–36

    Article  Google Scholar 

  8. Shing T K M, Cheng H M. Short syntheses of Gabosine I and Gabosine G from delta-D-gluconolactone. J Org Chem 2007, 72: 6610–6613

    Article  CAS  Google Scholar 

  9. Sawyer D T, Bagger J B. The lactone-acid-salt equilibria for D-glucono-delta-lactone and the hydrolysis kinetics for this lactone. J Am Chem So, 1959, 81: 5302–5306

    Article  CAS  Google Scholar 

  10. Polavarapu P L. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules? Chirality, 2008, 20: 664–672

    Article  CAS  Google Scholar 

  11. Nafie L A. Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu Rev Phys Chem, 1997, 48: 357–386

    Article  CAS  Google Scholar 

  12. Allenmark S, Gawronski J. Determination of absolute configuration — an overview related to this special issue. Chirality, 2008, 20: 606–608

    Article  CAS  Google Scholar 

  13. Bell A F, Hecht L, Barron L D. Low-wavenumber vibrational Raman optical activity of carbohydrates. J Raman Spectrosc, 1993, 24: 633–635

    Article  CAS  Google Scholar 

  14. Barron L D, Zhu F, Hecht L, Tranter G E, Isaacs N W. Raman optical activity: An incisive probe of molecular chirality and biomolecular structure. J Mol Structure, 2007, 834–836: 7–16

    Article  Google Scholar 

  15. Macleod N A, Johannessen C, Hecht L, Barron L D, Simons J P. From the gas phase to aqueous solution: Vibrational spectroscopy, Raman optical activity and conformational structure of carbohydrates. Int J Mass Spectrom, 2006, 253: 193–200

    Article  CAS  Google Scholar 

  16. Zhu F, Isaacs N W, Hecht L, Tranter G E, Barron L D. Raman optical activity of proteins, carbohydrates and glycoproteins. Chirality, 2006, 18: 103–115

    Article  Google Scholar 

  17. Barron L D, Zhu F, Hecht L. Raman optical activity: An incisive probe of chirality, and of biomolecular structure and behaviour. Vib Spectrosc, 2006, 42: 15–24

    Article  CAS  Google Scholar 

  18. Zhu F J, Isaacs N W, Hecht L, Barron L D. Polypeptide and carbohydrate structure of an intact glycoprotein from Raman optical activity. J Am Chem Soc, 2005, 127: 6142–6143

    Article  CAS  Google Scholar 

  19. Barron L D, Hecht L, Blanch E W, Bell A F. Solution structure and dynamics of biomolecules from Raman optical activity. Pro Biophys Mol Bio, 2000, 73: 1–49

    Article  CAS  Google Scholar 

  20. Barron L D, Hecht L, Bell A F. Raman optical activity: An incisive new probe of the structure and dynamics of biomolecules. Sci Pro, 1998, 81: 17–34

    CAS  Google Scholar 

  21. Barron L D, Hecht L, Bell A F, Wilson G. Recent developments in Raman optical activity of biopolymers. Appl Spectrosc, 1996, 50: 619–629

    Article  CAS  Google Scholar 

  22. Bell A F, Hecht L, Barron L D. Disaccharide solution stereochemistry from vibrational Raman optical activity. J Am Chem Soc, 1994, 116: 5155–5161

    Article  CAS  Google Scholar 

  23. Bell A F, Ford S J, Hecht L, Wilson G, Barron L D. Vibrational Raman optical activity of glycoproteins. Int J Biol Macromol, 1994, 16: 277–278

    Article  CAS  Google Scholar 

  24. Bell A F, Barron L D, Hecht L. Vibrational Raman optical activity study of D-glucose. Carbohyd Resc, 1994, 257: 11–24

    Article  CAS  Google Scholar 

  25. Barron L D, Ford S J, Bell A F, Wilson G, Hecht L, Cooper A. Vibrational Raman optical activity of biopolymers. Faraday Discuss, 1994: 217–232

  26. Wen Z Q, Barron L D, Hecht L. Vibrational Raman optical activity of monosaccharides. J Am Chem Soc, 1993, 115: 285–292

    Article  CAS  Google Scholar 

  27. Gaussian 03, Revision D.01, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J AJr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian, Inc., Wallingford CT, 2004

    Google Scholar 

  28. McCann D M, Stephens P J, Cheeseman J R. Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. J Org Chem, 2004, 69: 8709–8717

    Article  CAS  Google Scholar 

  29. McCann D M, Stephens P J. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. J Org Chem, 2006, 71: 6074–6098

    Article  CAS  Google Scholar 

  30. Diedrich C, Grimme S. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A, 2003, 107: 2524–2539

    Article  CAS  Google Scholar 

  31. Hackert M L, Jacobson R A. The crystal and molecular structure of D-glucono-(1,5)-lactone. Acta Cryst, 1971, B27: 203–209

    Google Scholar 

  32. Listowsky I, Englard S. Characterization of the far ultraviolet optically active absorption bands of sugars by circular dichroism. Biochem Biophys Res Commun, 1968, 30: 329–332

    Article  CAS  Google Scholar 

  33. Izumi H, Futamura S, Nafie L A, Dukor R K. Determination of molecular stereochemistry using vibrational circular dichroism spectroscopy: Absolute configuration and solution conformation of 5-formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-car boxylic acid lactone. Chem Rec, 2003, 3: 112–119

    Article  CAS  Google Scholar 

  34. Bell A F, Hecht L, Barron L D. Vibrational Raman optical activity of ketose monosaccharides. Spectrochim Acta A Mol Biomol Spectrosc, 1995, 51: 1367–1378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhaoChi Feng or Can Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20621063, 20773123, and 20673110) and Programme for Strategic Scientific Alliances between China and the Netherlands (Grant No. 2008DFB50130) 1) In some reference, chiral Raman spectroscopy (CRS) is also called Raman optical activity (ROA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, G., Qiu, S., Li, G. et al. Alkali-hydrolysis of D-glucono-delta-lactone studied by chiral Raman and circular dichroism spectroscopies. Sci. China Ser. B-Chem. 52, 552–558 (2009). https://doi.org/10.1007/s11426-009-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0085-0

Keywords

Navigation