Skip to main content
Log in

Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Compute Unified Device Architecture (CUDA) was used to design and implement molecular dynamics (MD) simulations on graphics processing units (GPU). With an NVIDIA Tesla C870, a 20–60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved, reaching up to 150 Gflops. MD simulation of cavity flow and particle-bubble interaction in liquid was implemented on multiple GPUs using a message passing interface (MPI). Up to 200 GPUs were tested on a special network topology, which achieves good scalability. The capability of GPU clusters for large-scale molecular dynamics simulation of meso-scale flow behavior was, therefore, uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alder B J, Wainwright T. Molecular dynamics by electronic computers. In: Prigogine I, ed. Proceeding of International Symposium on Transport Processes in Statistical Mechanics, Brussels. New York: Interscience, Wiley, 1956, 97–131

    Google Scholar 

  2. Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38(8): 114–117

    Google Scholar 

  3. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming Guide Version 2.0. 2008.

  4. Belleman R G, Bédorf J, Zwart S F P. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astron, 2008, 13(2): 103–112

    Article  Google Scholar 

  5. Tölke J. Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA. Comp Vis Sci, 2008, DOI: 10.1007/s00791-008-0120-2

  6. van Meel J A, Arnold A, Frenkel D, Zwart S F P, Belleman R G. Harvesting graphics power for MD simulations. Mol Simulat, 2008, 34(3): 259–266

    Article  Google Scholar 

  7. Anderson J A, Lorenz C D, Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comp Phys, 2008, 227(10): 5342–5359

    Article  Google Scholar 

  8. Liem S Y, Brown D, Clarke J H R. Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys Rev A, 1992, 45(6): 3706–3713

    Article  CAS  Google Scholar 

  9. Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Orlando: Academic Press, 1996. 443

    Google Scholar 

  10. Shankar P N, Deshpande M D. Fluid mechanics in the driven cavity. Annu Rev Fluid Mech, 2000, 32(1): 93–136

    Article  Google Scholar 

  11. Albensoeder S, Kuhlmann H C. Accurate three-dimensional lid-driven cavity flow. J Comput Phys, 2005, 206(2): 536–558

    Article  Google Scholar 

  12. Hou S, Zou Q, Chen S, Doolen G, Cogley A C. Simulation of cavity flow by the Lattice Boltzmann method. J Comput Phys, 1995, 118(2): 329–347

    Article  Google Scholar 

  13. Nie X, Robbins M O, Chen S. Resolving singular forces in cavity flow: Multiscale modeling from atomic to millimeter scales. Phys Rev Lett, 2006, 96(13): 134501–134504

    Article  Google Scholar 

  14. Qian T, Wang X-P. Driven cavity flow: from molecular dynamics to continuum hydrodynamics. Multiscale Model Simul, 2005, 3(4): 749–763

    Article  Google Scholar 

  15. Koplik J, Banavar J R. Corner flow in the sliding plate problem. Phys Fluids, 1995, 7(12): 3118–3125

    Article  CAS  Google Scholar 

  16. Gogotsi Y, Libera J A, Guvenc-Yazicioglu A, Megaridis C M. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett, 2001, 79(7): 1021–1023

    Article  CAS  Google Scholar 

  17. Sushko N, Cieplak M. Motion of grains, droplets, and bubbles in fluid-filled nanopores. Phys Rev E, 2001, 64(21): 021061–0210618

    Google Scholar 

  18. Chen F, Ge W, Wang L, Li J. Numerical study on gas-liquid nano-flows with pseudo-particle modeling and soft-particle molecular dynamics simulation. Microfluid Nanofluid, 2008, 5(5): 639–653

    Google Scholar 

  19. Matsumoto M, Matsuura T. Molecular dynamics simulation of a rising bubble. Mol Simulat, 2004, 30(13-15): 853–859

    Article  CAS  Google Scholar 

  20. Matsumoto M, Tanaka K. Nano bubble—Size dependence of surface tension and inside pressure. Fluid Dynam Res, 2008, 40(7-8): 546–553

    Article  Google Scholar 

  21. Nagayama G, Tsuruta T, Cheng P. Molecular dynamics simulation on bubble formation in a nanochannel. Int J Heat Mass Tran, 2006, 49(23-24): 4437–4443

    Article  CAS  Google Scholar 

  22. Park S H, Weng J G, Tien C L. A molecular dynamics study on surface tension of microbubbles. Int J Heat Mass Tran, 2001, 44(10): 1849–1856

    Article  CAS  Google Scholar 

  23. Nguyen A V, Evans G M. Attachment interaction between air bubbles and particles in froth flotation. Exp Therm Fluid Sci, 2004, 28(5): 381–385

    Article  CAS  Google Scholar 

  24. Omota F, Dimian A C, Bliek A. Adhesion of solid particles to gas bubbles. Part 2: Experimental. Chem Eng Sci, 2006, 61(2): 835–844

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20336040, 20221603 and 20490201), and the Chinese Academy of Sciences (Grant No. Kgcxz-yw-124)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Ge, W. & Li, J. Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs. Sci. China Ser. B-Chem. 52, 372–380 (2009). https://doi.org/10.1007/s11426-009-0069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0069-0

Keywords

Navigation