Science in China Series B: Chemistry

, Volume 52, Issue 2, pp 153–160 | Cite as

A new method for quick predicting the strength of intermolecular hydrogen bonds

  • ChangLiang Sun
  • Yan Zhang
  • XiaoNan Jiang
  • ChangSheng Wang
  • ZhongZhi Yang
Article

Abstract

A new method is proposed to quick predict the strength of intermolecular hydrogen bonds. The method is employed to produce the hydrogen-bonding potential energy curves of twenty-nine hydrogen-bonded dimers. The calculation results show that the hydrogen-bonding potential energy curves obtained from this method are in good agreement with those obtained from MP2/6-31+G** calculations by including the BSSE correction, which demonstrate that the method proposed in this work can be used to calculate the hydrogen-bonding interactions in peptides.

Keywords

intermolecular hydrogen bonds hydrogen-bonded dimer hydrogen-bonding potential energy curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Desiraju G R, Steiner T. The Weak Hydrogen Bond. Oxford: Oxford University Press, 1999Google Scholar
  2. 2.
    Dong H, Hua W, Li S. Estimation on the individual hydrogen bond strength in molecules with multiple hydrogen bonds. J Phys Chem, 2007, 111(15): 2941–2945CrossRefGoogle Scholar
  3. 3.
    Tian S X, Yang J. Effects of intramolecular hydrogen bonding on the ionization energies of proline. Angew Chem Int Ed, 2006, 45: 2069–2072CrossRefGoogle Scholar
  4. 4.
    Chen Y F, Dannenberg J J. Cooperative 4-pyridone H-bonds with extraordinary stability. A DFT molecular orbital study. J Am Chem Soc, 2006, 128: 8100–8101CrossRefGoogle Scholar
  5. 5.
    Feyereisen M W, Feller D, Dixon D A. Hydrogen bond energy of the water dimer. J Phys Chem, 1996, 100: 2993–2997CrossRefGoogle Scholar
  6. 6.
    Feller D. Application of systematic sequences of wave function to the water dimer. J Chem Phys, 1992, 96: 6104–6114CrossRefGoogle Scholar
  7. 7.
    Vargas R, Garza J, Friesner R A, Stern H, Hay B P, Dixon D A. Strength of the N—H⋯O=C and C—H⋯=C bonds in formamide and N-methylacetamide dimers. J Phys Chem A, 2001, 105:4963–4968CrossRefGoogle Scholar
  8. 8.
    Kim K, Jordan K D. Comparison of density function and MP2 calculations on the water monomer and dimer. J Phys Chem, 1994, 98: 10089–10094CrossRefGoogle Scholar
  9. 9.
    Wang C S, Wang J, Yang, Z Z. A new method for quick determining conformation stability of Alanine-α-polypeptide (in Chinese). Chem J Chin Uni, 2005, 26(3): 485–488Google Scholar
  10. 10.
    Wang C S, Wang X W, Wang J, Yang, Z Z. Special hydrogen method for predicting conformation stability of Alanine-α-tetrapeptide (in Chinese). Acta Chim Sin, 2006, 64(2): 104–110Google Scholar
  11. 11.
    Wang C S, Zhang Y, Gao K, Yang, Z Z. A new scheme for determining the intramolecular seven-membered ring N—H⋯O=C hydrogenbonding energies of glycine and alanine peptides. J Chem Phys, 2005, 123: 024307-1-024307-8Google Scholar
  12. 12.
    Scheiner S. Contributions of NH⋯O and CH⋯O hydrogen bonds to stability of β-sheets in proteins. J Phys Chem B, 2006, 110: 18670–18679CrossRefGoogle Scholar
  13. 13.
    Chin W, Piuzzi F, Dimicoli I, Mons M. Probing the competition between secondary structures and local preferences in gas phase isolated peptide backbones. Phys Chem Chem Phys, 2006, 8: 1033–1048CrossRefGoogle Scholar
  14. 14.
    Kim K, Jordan K D. Comparison of density function and MP2 calculations on the water monomer and dimer. J Phys Chem, 1994, 98: 10089–10094CrossRefGoogle Scholar
  15. 15.
    Ireta J, Neugebauer J, Scheffler M. On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J Phys Chem A, 2004, 108: 5692–5698CrossRefGoogle Scholar
  16. 16.
    Leach A R. Molecular modeling principles and applications. London: Addison Wesley Longman, 2001Google Scholar
  17. 17.
    Boys S F, Bernardi F. Calculations of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19: 553–556CrossRefGoogle Scholar
  18. 18.
    Simon S, Duran M, Dannenberg J J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys, 1996, 105: 11024–11031CrossRefGoogle Scholar
  19. 19.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J AJr., Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A D, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chem W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 03; Pittsburgh: Gaussian Inc., 2003Google Scholar
  20. 20.
    Cornell W D, Spellmeyer C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecular. J Am Chem Soc, 1995, 117: 5179–5197CrossRefGoogle Scholar
  21. 21.
    Lehninger A L, Nelson D L, Cox M M. Principles of Biochemistry, 2nd ed. New York: Worth, 1993Google Scholar
  22. 22.
    Parisien M, Major F. A new catalog of protein β-sheets. Proteins, 2005, 61: 545–558CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • ChangLiang Sun
    • 1
  • Yan Zhang
    • 1
  • XiaoNan Jiang
    • 1
  • ChangSheng Wang
    • 1
  • ZhongZhi Yang
    • 1
  1. 1.Department of ChemistryLiaoning Normal UniversityDalianChina

Personalised recommendations