Skip to main content
Log in

Highly selective fluorescent chemosensor for Na+ based on pyrene-modified calix[4]arene derivative

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A novel calix[4]arene derivative with pyrene fluorophores at the upper rim and tetraester ionophores at the lower rim was synthesized in six steps, and its structure was proved by NMR and ESI-MS spectroscopies. Furthermore, the chemosensing behavior of the host compound for alkali and alkaline earth metal ions was investigated by fluorescence spectroscopy. The obtained results show that the calixarene host can selectively bind sodium ion with the complexation stability constant of 2190 mol−1·L. The complexation with sodium ion can pronouncedly induce the excimer emission to decrease and the monomer emission to increase, whereas the addition of the other alkali and alkaline earth metal ions does not cause appreciable changes in the fluorescence spectrum of the host compound. The present calix[4]arene derivative displays potential application as fluorescent chemosensor for sodium ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev, 2000, 205: 3–40

    Article  CAS  Google Scholar 

  2. He H R, Mortellaro M A, Leiner M J P, Young S T, Fraatz R J, Tusa J K. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal Chem, 2003, 75(3): 549–555

    Article  CAS  Google Scholar 

  3. Bruno A E, Barnard S, Rouilly M, Waldner A, Berger J, Ehrat M. All-solid-state miniaturized fluorescence sensor array for the determination of critical gases and electrolytes in blood. Anal Chem, 1997, 69(3): 507–513

    Article  CAS  Google Scholar 

  4. Witulski B, Weber M, Bergstrasser U, Desvergne J P, Bassani D M, Bouas-Laurent H. Novel alkali cation chemosensors based on N-9-anthrylaza-crown ethers. Org Lett, 2001, 3(10): 1467–1470

    Article  CAS  Google Scholar 

  5. Gunnlaugsson T, Nieuwenhuyzen M, Richard L, Thoss V. Novel sodium-selective fluorescent PET and optically based chemosensors: Towards Na+ determination in serum. J Chem Soc, Perkin Trans 2, 2002: 141–150

    Google Scholar 

  6. Ji Y, Zhang R, Li Y J, Li Y Z, Zuo J L, You X Z. Syntheses, structures, and electrochemical properties of platinum(II) complexes containing di-tert-butylbipyridine and crown ether annlated dithiolate ligands. Inorg Chem, 2006, 46(3), 866–876

    Article  Google Scholar 

  7. Dubach J M, Harjes D I, Clark H A. Fluorescent ion-selective nanosensors for intracellular analysis with improved lifetime and size. Nano Lett, 2007, 7(6), 1827–1831

    Article  CAS  Google Scholar 

  8. Xu C, Wygladacz K, Retter R, Bell M, Bakker E. Multiplexed flow cytometric sensing of blood electrolytes in physiological samples using fluorescent bulk optode microspheres. Anal Chem, 2007, 79(24), 9505–9512

    Article  CAS  Google Scholar 

  9. Böhmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed Engl, 1995, 34(7): 713–745

    Article  Google Scholar 

  10. Aoki I, Kawabata H, Nakashima K, Shinka S. Fluorescence calix[4]arene which responds to solvent polarity and metal ions. Chem Commun, 1991: 1771–1773

  11. Aoki I, Sakaki T, Shinka S. A new metal sensory system based on intramolecular fluorescence quenching on the ionphoric calix[4] arene ring. Chem Commun, 1992: 730–732

  12. Jin T, Lchikawa K, Koyama T. A fluorescent calix[4]arene as an intramolecular excimer-forming Na+ sensor in nonaqueous solution. Chem Commun, 1992: 499–501

  13. Jin T. A new Na+ sensor based on intramolecular fluorescence energy transfer derived from calix[4]arene. Chem Commun, 1999: 2491–2492

  14. Leray I, O’Reilly F, Habib Jiwan J L, Soumillion J P, Valeur B. A new calix[4]arene-based fluorescent sensor for sodium ion. Chem Commun, 1999: 795–796

  15. Leray I, Lefevre J P, Delouis J F, Delaire J, Valeur B. Synthesis and photophysical and cation-binding properties of mono- and tetranaphthylcalix[4]arenes as highly sensitive and selective fluorecent sensors for sodium. Chem Eur J, 2001, 7(21): 4590–4598

    Article  CAS  Google Scholar 

  16. van der Veen N J, Flink S, Deij M A, Egberink R J M, van Veggel F C J M, Reinhoudt D N. Monolayer of a Na+-selective fluoroionophore on glass: Connecting the fields of monolayers and optical detection of metal ions. J Am Chem Soc, 2000, 122(25): 6112–6113

    Article  Google Scholar 

  17. Kim J S, Quan D T. Calixarene-derived fluorescent probes. Chem Rev, 2007, 107(9): 3780–3799

    Article  CAS  Google Scholar 

  18. Schazmann B, Alhashimy N, Diamond D. Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J Am Chem Soc, 2006, 128(26): 8607–8614

    Article  CAS  Google Scholar 

  19. Diamond D, Mckervey M A. Calix[4]arene-based sensing agents. Chem Soc Rev, 1996, 25(1), 15–24

    Article  CAS  Google Scholar 

  20. Gutsche C D, Lin L G. Calixarene 12: The synthesis of functionalized calixarene. Tetrahedron, 1986, 42(6): 1633–1640

    Article  CAS  Google Scholar 

  21. Rudkevich D M, Verboom W, Reinhoudt D N. Calix[4]arene salenes: A bifunctional receptor for NaH2PO3. J Org Chem, 1994, 59(13): 3683–3686

    Article  CAS  Google Scholar 

  22. Arduini A, Fabbi M, Mantovani M, Mirone L, Pochini A, Secchi A, Ungaro R. Calix[4]arenes blocked in a rigid cone conformation by selective functionalization at the lower rim. J Org Chem, 1995, 60(5): 1454–1457

    Article  CAS  Google Scholar 

  23. Segura M, Bricoli B, Casnati A, Munoz E M, Sansone F, Ungaro R, Vicent C. A prototype calix[4]arene-based receptor for carbohydrate recognition containing peptide and phosphate binding groups. J Org Chem, 2003, 68(16): 6296–6303

    Article  CAS  Google Scholar 

  24. Inoue Y, Yamamoto K, Wada T, Everitt S, Gao X M, Hou Z J, Tong L H, Jiang S K, Wu H M. Inclusion complexation of (cyclo)alkanes and (cyclo)alkanols with 6-O-modified cyclodextrins. J Chem Soc, Perkin Trans 2, 1998: 1807–181

    Google Scholar 

  25. Ikeda A, Shinkai S. Novel cavity design using calix[n]arene skeleTons: Toward molecular recognition and metal binding. Chem Rev, 1997, 97(5): 1713–1734

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20421202, 20673061 & 20703025) and the 111 Project (Grant No. B06005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Guo, D., Jiang, B. et al. Highly selective fluorescent chemosensor for Na+ based on pyrene-modified calix[4]arene derivative. Sci. China Ser. B-Chem. 52, 513–517 (2009). https://doi.org/10.1007/s11426-009-0011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0011-5

Keywords

Navigation