Skip to main content
Log in

Effect of gating currents of ion channels on the collective spiking activity of coupled Hodgkin-Huxley neurons

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system. It was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the desynchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating currents on the global information processing and signal transduction in real neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    CAS  Google Scholar 

  2. White J A, Rubinstein J T, Kay A R. Channel noise in neurons. Trends Neurosci, 2000, 23: 131–137

    Article  CAS  Google Scholar 

  3. Koch K. Biophysics of Computation: Informational Processing in Single Neurons. New York: Oxford University Press, 1999

    Google Scholar 

  4. van Rossum M C W, O’Brien B J, Smith R G. Effects of noise on the spike timing precision of retinal ganglion cells. J Neurophys, 2003, 89: 2406–2419

    Article  Google Scholar 

  5. Skaugen E, Walløe L. Firing behavior in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol Scand, 1979, 107: 343–363

    Article  CAS  Google Scholar 

  6. Clay J R, DeFelice L J. Relationship between membrane excitability and single channel open-close kinetics. Biophys J 1983, 42: 151–157

    Article  CAS  Google Scholar 

  7. Strassberg A F, DeFelice L J. Limitations of the Hodgkin-Huxley formalism — effects of single-channel kinetics on trans-membrane voltage dynamics. Neural Comput, 1993, 5: 843–855

    Article  Google Scholar 

  8. DeFelice L J, Isaac A. Chaotic states in a random world — relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J Stat Phys, 1993, 70: 339–354

    Article  Google Scholar 

  9. Fox R F, Lu Y. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E, 1994, 49: 3421–3431

    Article  CAS  Google Scholar 

  10. Chow C C, White J A. Spontaneous action potentials due to channel fluctuations. Biophys J, 1996, 71: 3013–3021

    Article  CAS  Google Scholar 

  11. Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neuronal Comput, 1998, 10: 1679–1694

    Article  CAS  Google Scholar 

  12. Bezrukov S M, Vodyanoy I. Noise-induced enhancement of signal- transduction across voltage-dependent ion channels. Nature, 1995, 378: 362–364

    Article  CAS  Google Scholar 

  13. Bezrukov S M, Vodyanoy I. Signal transduction across alamethicin ion channels in the presence of noise. Biophys J, 1997, 73: 2456–2464

    Article  CAS  Google Scholar 

  14. Schmid G, Goychuk I, Hänggi P. Stochastic resonance as a collective property of ion channel assemblies. Europhys Lett, 2001, 56: 22–28

    Article  CAS  Google Scholar 

  15. Jung P, Shuai J W. Optimal sizes of ion channel clusters. Europhys Lett, 2001, 56: 29–35

    Article  CAS  Google Scholar 

  16. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys, 1998, 70: 223–287

    Article  CAS  Google Scholar 

  17. Hänggi P. Stochastic resonance in biology— how noise can enhance detection of weak signals and help improve biological information processing. Chem Phys Chem, 2002, 3: 285–290

    Google Scholar 

  18. Shuai J W, Jung P. Optimal ion channel clustering for intracellular calcium signaling. Proc Natl Acad Sci, 2003, 100: 506–510

    Article  CAS  Google Scholar 

  19. Ginzburg S L, Pustovoit M A. Bursting dynamics of a model neuron induced by intrinsic channel noise. Fluct Noise Lett, 2003, 3: L265–L274

    Article  Google Scholar 

  20. Schmid G, Goychuk I, Hänggi P, Zeng S, Jung P. Stochastic resonance and optimal clustering for assemblies of ion channels. Fluct Noise Lett, 2004, 4: L33–L42

    Article  Google Scholar 

  21. Gong Y B, Wang M S, Hou Z H, Xin H W. Optimal spike coherence and synchronization on complex Hodgkin-Huxley neuron networks. ChemPhysChem, 2005, 6: 1042–1047

    Article  CAS  Google Scholar 

  22. Shuai J W, Jung P. The dynamics of small excitable ion channel clusters. Chaos, 2006, 16: 026104

    Article  CAS  Google Scholar 

  23. Li Y P, Li Q S. Implicit and explicit internal signal stochastic resonance in calcium ion oscillations. Chem Phys Lett, 2006, 417: 498–502

    Article  CAS  Google Scholar 

  24. Schmid G, Goychuk I, Hänggi P. Channel noise and synchronization in excitable membranes. Physica A, 2003, 325: 165–175.

    Article  Google Scholar 

  25. Wang M S, Hou Z H, Xin H W. Double-system-size resonance for spiking activity of coupled Hodgkin-Huxley neurons. ChemPhys Chem, 2004, 5: 1602–1605

    CAS  Google Scholar 

  26. Schmid G, Goychuk I, Hänggi P. Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems. Phys Bio, 2006, 3: 248–254

    Article  CAS  Google Scholar 

  27. Pouget A, Zemel R S, Dayan P. Information processing with population codes. Nat Rev Neurosci, 2000, 1: 125–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Additional information

Supported by the Science Foundation of Ludong University (Grant Nos. 23140301, L20072805)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Xie, Y., Xu, B. et al. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodgkin-Huxley neurons. Sci. China Ser. B-Chem. 52, 20–25 (2009). https://doi.org/10.1007/s11426-008-0160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0160-y

Keywords

Navigation