Skip to main content
Log in

High activity of Mj HSP16.5 under acidic condition

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Small heat shock proteins (sHSPs) exist ubiquitously among all organisms, with a variety of functions. All small heat shock proteins assemble into a native large oligomeric state containing 9–40 monomers. The sHSPs show chaperone-like activity to prevent the aggregation of nonnative proteins under stressful cellular conditions such as non-optimal temperatures, pH changes, osmotic pressure, and exposure to toxic chemicals. It was found that a common dimeric subunit of sHSPs might be the major active species, but whether the native large oligomeric state is only a storage state or a state crucial to its molecular chaperone activity is still under debate. The native large oligomeric state of the small heat shock protein from a hyperthermophilic methanarchaeon, Methanococcus jannaschii (Mj HSP 16.5), is a stable icositetramer, which is a symmetric hollow sphere that is very stable even at 85°C, and no small active subunit has been detected till now. Our results show that Mj sHSP 16.5 changes into small and active oligomeric state at pH 3, likely as octamers (average result) at 25°C, and dimers at 65°C. The dimer of Mj HSP 16.5 at pH 3.0 and 65°C is very active and efficient, even 7-fold more efficient than the high-temperature-activated icositetramer at neutral pH. Monomer exchange can be observed between dimers of Mj HSP 16.5 at pH 3.0 and 65°C. These results not only demonstrate that the icositetramer structure of Mj sHSP16.5 is not necessary for its molecular chaperone activity, but also suggest that Mj sHSP16.5 is a very efficient chaperone acting at high temperature and under the acidic condition. Even though it is not clear whether the native environment of Methanococcus jannaschii is acidic or not, given its ability to excrete acidic compounds, it is likely that Methanococcus jannaschii will encounter acidic internal or external environments at high temperature. Our results demonstrate that Mj HSP 16.5 may help Methanococcus jannaschii to survive better under those extreme environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Montfort R L, Basha E, Friedrich K L, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Struct Biol, 2001, 8: 1025–1030

    Article  Google Scholar 

  2. Wickner S, Maurizi M R, Gottesman S. Posttranslational quality control: Folding, refolding, and degrading proteins. Science, 1999, 286: 1888–1893

    Article  CAS  Google Scholar 

  3. Haslbeck M. sHSPs and their role in the chapeone network. Cell Mol Life Sci, 2002, 59: 1649–1657

    Article  CAS  Google Scholar 

  4. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. Some like it hot: The structure and function of small heat-shock proteins. Nat Struct Mol Biol, 2005, 12: 842–846

    Article  CAS  Google Scholar 

  5. Sun Y, MacRae T H. Small heat shock proteins: Molecular structure and chaperone function. Cell Mol Life Sci, 2005, 62: 2460–2476

    Article  CAS  Google Scholar 

  6. Sun Y, MacRae T H. The small heat shock proteins and their role in human disease. FEBS J, 2005, 272: 2613–2627

    Article  CAS  Google Scholar 

  7. van den IJssel P, Norman D G, Quinlan R A. Molecular chaperones: Small heat shock proteins in the limelight. Curr Biol, 1999, 9: R103–R105

    Article  Google Scholar 

  8. Ehrnsperger M, Graber S, Gaestel M, Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J, 1997, 16: 221–229

    Article  CAS  Google Scholar 

  9. Clark J I, Muchowski P J. Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol, 2000, 10: 52–59

    Article  CAS  Google Scholar 

  10. Kim K K, Kim R, Kim S. Crystal structure of a small heat-shock protein. Nature, 1998, 394: 595–599

    Article  CAS  Google Scholar 

  11. Stromer T, Ehrnsperger M, Gaestel M, Buchner J. Analysis of the in-teraction of small heat shock proteins with unfolding proteins. J Biol Chem, 2003, 278: 18015–18021

    Article  CAS  Google Scholar 

  12. Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: The N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem, 2004, 279: 11222–11228

    Article  CAS  Google Scholar 

  13. Giese K C, Vierling E. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem, 2002, 277: 46310–46318

    Article  CAS  Google Scholar 

  14. Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White H E, Chen S, Saibil H R, Buchner J. Hsp26: A temperature-regulated chaperone.

  15. Shashidharamurthy R, Koteiche H A, Dong J, Mchaourab H S. Mechanism of chaperone function in small heat shock proteins: Dissociation of the Hsp27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem, 2005, 280: 5281–5289

    Article  CAS  Google Scholar 

  16. Gu L, Abulimiti A, Li W, Chang Z. Monodisperse Hsp 16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. J Mol Biol, 2002, 319: 517–526

    Article  CAS  Google Scholar 

  17. Bova M P, Mchaourab H S, Han Y, Fung B K. Subunit exchange of small heat shock proteins: Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem, 2000, 275: 1035–1042

    Article  CAS  Google Scholar 

  18. Bova M P, Huang Q, Ding L, Horwitz J. Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J Biol Chem, 2002, 277: 38468–38475

    Article  CAS  Google Scholar 

  19. Guan Y, Wang Z, Cao A, Lai L, Zhao X. Subunit exchange of Mj Hsp16.5 studied by single-molecule imaging and fluorescence resonance energy transfer. J Am Chem Soc, 2006, 128: 7203–7208

    Article  CAS  Google Scholar 

  20. Cao A, Wang Z, Wei P, Xu F, Cao J, Lai L. Preheating induced ho-mogeneity of the small heat shock protein from Methanococcus jannaschii. Biochim Biophys Acta, 2008, 1784: 489–495

    CAS  Google Scholar 

  21. Fu X, Chang Z. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from mycobacterium tuberculosis. Biochem Biophys Res Commun, 2004, 316: 291–299

    Article  CAS  Google Scholar 

  22. Franzmann T M, Wuhr M, Richter K, Walter S, Buchner J. The activation mechanism of Hsp 26 does not require dissociation of the oligomer. J Mol Biol, 2005, 350: 1083–1093

    Article  CAS  Google Scholar 

  23. Avilov S V, Aleksandrov N A, Demchenko A P. Quaternary structureof alpha-crystallin is necessary for the binding of unfolded proteins: A surface plasmon resonance study. Protein Pept Lett, 2004, 11: 41–48

    Article  CAS  Google Scholar 

  24. Fu X, Liu C, Liu Y, Feng X, Gu L, Chen X, Chang Z. Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochem Biophys Res Commun, 2003, 310: 412–420

    Article  CAS  Google Scholar 

  25. Kim D R, Lee I, Ha S C, Kim K K. Activation mechanism of Hsp 16.5 from Methanococcus jannaschii. Biochem Biophys Res Commun, 2003, 307: 991–998

    Article  CAS  Google Scholar 

  26. Yang H, Huang S, Dai H, Gong Y, Zheng C, Chang Z. The myco-bacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: Conformational flexibility and molecular chaperone activity. Protein Sci, 1999, 8: 174–179

    CAS  Google Scholar 

  27. Shi J, Koteiche H A, Mchaourab H S, Stewart P L. Cryoelectron microscopy and EPR analysis of engineered symmetric and polydisperse Hsp16.5 assemblies reveals determinants of polydispersity and substrate binding. J Biol Chem, 2006, 281: 40420–40428

    Article  CAS  Google Scholar 

  28. Kim R, Lai L, Lee H H, Cheong G W, Kim K K, Wu Z, Yokota H, Marqusee S, Kim S H. On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. Proc Natl Acad Sci USA, 2003, 100: 8151–8155

    Article  CAS  Google Scholar 

  29. Hong W, Jiao W, Hu J, Zhang J, Liu C, Fu X, Shen D, Xia B, Chang Z. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J Biol Chem, 2005, 280: 27029–27034

    Article  CAS  Google Scholar 

  30. Poon S, Rybchyn M S, Easterbrook-Smith S B, Carver J A, Pankhurst G J, Wilson M R. Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem, 2002, 277: 39532–39540

    Article  CAS  Google Scholar 

  31. Wang K. αB- and αA-crystallin prevent irreversible acidification-induced protein denaturation. Biochem Biophys Res Commun, 2001, 287: 642–647

    Article  CAS  Google Scholar 

  32. Wang Z, Lai B, Cao J, Li Z, Qu L L, Cao A N, Lai L H. Hierarchical unfolding of Mj Hsp 16.5. Acta Phys Chim Sin (in Chinese), 2008, 24(10): 1745–1750

    CAS  Google Scholar 

  33. Lee G J, Roseman A M, Saibil H R, Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J, 1997, 16: 659–671

    Article  CAS  Google Scholar 

  34. Wang K, Spector A. α-Crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci, 1995, 36: 311–321

    CAS  Google Scholar 

  35. Farahbakhsh Z T, Huang Q L, Ding L L, Altenbach C, Steinhoff H J, Horwitz J, Hubbell W L. Interaction of alpha-crystallin with spin-labeled peptides. Biochemistry, 1995, 34: 509–516

    Article  CAS  Google Scholar 

  36. Kim K K, Yokota H, Santoso S, Lerner D, Kim R, Kim S H. Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J Struct Biol, 1998, 121: 76–80

    Article  CAS  Google Scholar 

  37. Mukhopadhyay B, Johnson E F, Wolfe R S. Reactor-scale cultivation of the hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities. Appl Environ Microbiol, 1999, 65: 5059–5065

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to AoNeng Cao or LuHua Lai.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20203001, 20673003, and 30490245) and Ministry of Science and Technology of China (Grant No. 2006AA02Z301)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Cao, A. & Lai, L. High activity of Mj HSP16.5 under acidic condition. Sci. China Ser. B-Chem. 52, 325–331 (2009). https://doi.org/10.1007/s11426-008-0158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0158-5

Keywords

Navigation