Skip to main content
Log in

Enhancement of two-photon absorption cross section and singlet-oxygen generation in porphyrin-cored star polymers

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

We report a newly synthesized polymer of a star-shaped porphyrin compound (TPA-FxP) with four oligofluorene arms at its meso positions with the pronounced enhancement of the two-photon properties and the generation of singlet oxygen by utilizing the two-photon excited fluorescence resonance energy transfer. The steady-state spectra and transient triplet-triplet absorption spectra give evidence that the enhanced two-photon absorption cross section results from not only the through-space energy transfer (Förster) but also the through-bond energy transfer between conjugated peripheral oligofluorene arms and the porphyrin core. The two-photon absorption cross section at 780 nm up to 3360 GM (1 GM = 10−50 cm4·s/photon) of TPA-FxP was obtained, which is comparable to the highest values reported from other similar chemically modified porphyrin core compounds. Furthermore, the enhanced production of singlet oxygen under two-photon absorption conditions is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henderson B W, Dougherty T J. How does photodynamic therapy work. Photochem Photobiol, 1992, 55(1): 145–157

    Article  CAS  Google Scholar 

  2. Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst, 1998, 90(12): 889–905

    Article  CAS  Google Scholar 

  3. Pandey R K, Zheng G. Porphyrins as photosensitizers in photodynamic therapy. In: Kadish K M, Smith K M, Guilard R, eds. The Porphyrin Handbook, Vol 6. Boston: Academic Press, 2000, 157–230

    Google Scholar 

  4. Allen C M, Sharman W M, Van Lier J E. Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrin Phthalocyanines, 2001, 5(2): 161–169

    Article  CAS  Google Scholar 

  5. Jang W D, Nishiyama N, Zhang G D, Harada A, Jiang D L, Kawauchi S, Morimoto Y, Kikuchi M, Koyama H, Aida T, Kataoka K. Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy. Angew Chem, Int Ed, 2005, 44(3): 419–423

    Article  CAS  Google Scholar 

  6. Konan Y N, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B-Biol, 2002, 66(2): 89–106

    Article  CAS  Google Scholar 

  7. Haag R, Kratz F. Polymer therapeutics: Concepts and applications. Angew Chem, Int Ed, 2006, 45(8): 1198–1215

    Article  CAS  Google Scholar 

  8. Boyle R W, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol, 1996, 64(3): 469–485

    Article  CAS  Google Scholar 

  9. Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc ReV, 1995, 24(1): 19–33

    Article  CAS  Google Scholar 

  10. Bonnett R, Martinez G. Photobleaching of sensitisers used in photo-dynamic therapy. Tetrahedron, 2001, 57(47): 9513–9547

    Article  CAS  Google Scholar 

  11. DeRosa M C, Crutchley R J. Photosensitized singlet oxygen and its applications. Coord Chem ReV, 2002, 233–234: 351–371

    Article  Google Scholar 

  12. Liu J, Zhao Y W, Zhao J Q, Xia A D, Jiang L J, Wu S, Ma L, Dong Y Q, Gu Y H. Two-photon excitation studies of hypocrellins for photodynamic therapy. J Photochem Photobiol B-Biol, 2002, 68(2–3): 156–164

    Article  CAS  Google Scholar 

  13. An J Y, Hu Y Z, Jiang L J. Reactivity of semiquinone radical anions of hydroxyperylenequinone with oxygen. J Photochem Photobiol B-Biol, 1996, 33(3): 261–266

    Article  CAS  Google Scholar 

  14. Cheong W F, Prahl S A, Welch A J. A review of the optical properties of biological tissues. IEEE J Quantum Electron, 1990, 26(12): 2166–2185

    Article  Google Scholar 

  15. Cahalan M D, Parker I, Wei S H, Miller M J. Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat Rev Immunol, 2002, 2(11): 872–880

    Article  CAS  Google Scholar 

  16. Kruk M, Karotki A, Drobizhev M, Kuzmitsky V, Gael V, Rebane A. Two-photon absorption of tetraphenylporphin free base. J Lumin, 2003, 105(1): 45–55

    Article  CAS  Google Scholar 

  17. Frederiksen P K, McIlroy S P, Nielsen C B, Nikolajsen L, Skovsen E, Jorgensen M, Mikkelsen K V, Ogilby P R. Two-photon photosensitized production of singlet oxygen in water. J Am Chem Soc, 2005, 127(1): 255–269

    Article  CAS  Google Scholar 

  18. Morone M, Beverina L, Abbotto A, Silvestri F, Collini E, Ferrante C, Bozio R, Pagani G A. Enhancement of two-photon absorption cross-section and singlet-oxygen generation in porphyrins upon β-functionalization with donor-acceptor substituents. Org Lett, 2006, 8(13): 27 19–2722

    Article  CAS  Google Scholar 

  19. Drobizhev M, Karotki A, Kruk M, Rebane A. Resonance enhancement of two-photon absorption in porphyrins. Chem Phys Lett, 2002, 355(1–2): 175–182

    Article  CAS  Google Scholar 

  20. Drobizhev M, Karotki A, Kruk M, Mamardashvili N, Rebane A. Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution. Chem Phys Lett, 2002, 361 (5–6): 504–512

    Article  Google Scholar 

  21. Drobizhev M, Karotki A, Kruk M, Krivokapic A, Anderson H L, Rebane A. Photon energy upconversion in porphyrins: One-photon hot-band absorption versus two-photon absorption. Chem Phys Lett, 2003, 370(5–6): 690–699

    Article  CAS  Google Scholar 

  22. Karotki A, Drobizhev M, Kruk M, Spangler C, Nickel E, Mamardashvili N, Rebane A. Enhancement of two-photon absorption in tetrapyrrolic compounds. J Opt Soc Am B, 2003, 20(2): 321–332

    Article  CAS  Google Scholar 

  23. Karotki A, Kruk M, Drobizhev M, Rebane A, Nickel E, Spangler C W. Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption. IEEE J Sel Top Quantum Electron, 2001, 7(6): 971–975

    Article  CAS  Google Scholar 

  24. Drobizhev M, Karotki A, Kruk M, Dzenis Y, Rebane A, Meng F, Nickel E, Spangler C W. Strong two-photon absorption in new porphyrins with asymmetrical meso-substitution. In: Yeates A T, Belfield K D, Kajzar F, Lawson C M, eds. Nonlinear Optical Transmission and Multiphoton Processes in Organics. Bellingham: Spie-Int Society Optical Engineering, 2003, 63–74

    Google Scholar 

  25. Drobizhev M, Meng F, Rebane A, Stepanenko Y, Nickel E, Spangler C W. Strong two-photon absorption in new asymmetrically substituted porphyrins: Interference between charge-transfer and intermediate-resonance pathways. J Phys Chem B, 2006, 110(20): 9802–9814

    Article  CAS  Google Scholar 

  26. Dichtel W R, Serin J M, Edder C, Fréchet J M J, Matuszewski M, Tan L S, Ohulchanskyy T Y, Prasad P N. Singlet oxygen generation via two-photon excited fret. J Am Chem Soc, 2004, 126(17): 5380–5381

    Article  CAS  Google Scholar 

  27. Oar M A, Serin J A, Dichtel W R, Fréchet J M J, Ohulchanskyy T Y, Prasad P N. Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a watersoluble dendrimer. Chem Mater, 2005, 17(9): 2267–2275

    Article  CAS  Google Scholar 

  28. Oar M A, Dichtel W R, Serin J M, Fréchet J M J, Rogers J E, Slagle J E, Fleitz P A, Tan L S, Ohulchanskyy T Y, Prasad P N. Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited fret. Chem Mater, 2006, 18(16): 3682–3692

    Article  CAS  Google Scholar 

  29. Briñas R P, Troxler T, Hochstrasser R M, Vinogradov S A. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J Am Chem Soc, 2005, 127(33): 11851–11862

    Article  CAS  Google Scholar 

  30. Chen C Y, Tian Y, Cheng Y J, Young A C, Ka J W, Jen A K Y. Two-photon absorbing block copolymer as a nanocarrier for porphyrin: Energy transfer and singlet oxygen generation in micellar aqueous solution. J Am Chem Soc, 2007, 129(23): 7220–7221

    Article  CAS  Google Scholar 

  31. Ogawa K, Ohashi A, Kobuke Y, Kamada K, Ohta K. Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin. J Am Chem Soc, 2003, 125 (44): 13356–13357

    Article  CAS  Google Scholar 

  32. Ogawa K, Ohashi A, Kobuke Y, Kamada K, Ohta K. Two-photon absorption properties of self-assemblies of butadiyne-linked bis (imidazolylporphyrin). J Phys Chem B, 2005, 109(46): 22003–2 2012

    Article  CAS  Google Scholar 

  33. Ogawa K, Hasegawa H, Inaba Y, Kobuke Y, Inouye H, Kanemitsu Y, Kohno E, Hirano T, Ogura S, Okura I. Water-soluble bis(imidazolylporphyrin) self-assemblies with large two-photon absorption cross sections as potential agents for photodynamic therapy. J Med Chem, 2006, 49(7): 2276–2283

    Article  CAS  Google Scholar 

  34. Karotki A, Drobizhev M, Dzenis Y, Taylor P N, Anderson H L, Rebane A. Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer. Phys Chem Chem Phys, 2004, 6(1): 7–10

    Article  CAS  Google Scholar 

  35. Drobizhev M, Stepanenko Y, Dzenis Y, Karotki A, Rebane A, Taylor P N, Anderson H L. Understanding strong two-photon absorption in Õ-conjugated porphyrin dimers via double-resonance enhancement in a three-level model. J Am Chem Soc, 2004, 126(47): 153 52–15353

    Article  CAS  Google Scholar 

  36. Drobizhev M, Stepanenko Y, Dzenis Y, Karotki A, Rebane A, Taylor P N, Anderson H L. Extremely strong nearir two-photon absorption in conjugated porphyrin dimers: Quantitative description with three-essential-states model. J Phys Chem B, 2005, 109(15): 7223–7236

    Article  CAS  Google Scholar 

  37. Ikeda C, Yoon Z S, Park M, Inoue H, Kim D, Osuka A. Helicity induction and two-photon absorbance enhancement in zinc(ii) meso-meso linked porphyrin oligomers via intermolecular hydrogen bonding interactions. J Am Chem Soc, 2005, 127(2): 534–535

    Article  CAS  Google Scholar 

  38. Kim D Y, Ahn T K, Kwon J H, Kim D, Ikeue T, Aratani N, Osuka A, Shigeiwa M, Maeda S. Large two-photon absorption (tpa) cross-section of directly linked fused diporphyrins. J Phys Chem A, 2005, 109(13): 2996–2999

    Article  CAS  Google Scholar 

  39. Ahn T K, Kim K S, Kim D Y, Noh S B, Aratani N, Ikeda C, Osuka A, Kim D. Relationship between two-photon absorption and the β-conjugation pathway in porphyrin arrays through dihedral angle control. J Am Chem Soc, 2006, 128(5): 1700–1704

    Article  CAS  Google Scholar 

  40. Yoon M C, Noh S B, Tsuda A, Nakamura Y, Osuka A, Kim D. Photophysics of meso-β doubly linked ni(ii) porphyrin arrays: Large two-photon absorption crosssection and fast energy relaxation dynamics. J Am Chem Soc, 2007, 129(33): 10080–10081

    Article  CAS  Google Scholar 

  41. Screen T E O, Thorne J R G, Denning R G, Bucknall D G, Anderson H L. Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder. J Am Chem Soc, 2002, 124(33): 9712–9713

    Article  CAS  Google Scholar 

  42. Ishi-I T, Taguri Y, Kato S, Shigeiwa M, Gorohmaru H, Maeda S, Mataka S. Singlet oxygen generation by two-photon excitation of porphyrin derivatives having two-photon-absorbing benzothiadiazole chromophores. J Mater Chem, 2007, 17(31): 3341–3346

    Article  CAS  Google Scholar 

  43. Li B S, Li J, Fu Y Q, Bo Z S. Porphyrins with four monodisperse oligofluorene arms as efficient red light-emitting materials. J Am Chem Soc, 2004, 126(11): 3430–3431

    Article  CAS  Google Scholar 

  44. Li B S, Xu X, Sun M, Fu Y, Yu G, Liu Y, Bo Z S. Porphyrin-cored star polymers as efficient nondoped red light-emitting materials. Macromolecules, 2006, 39(1): 456–461

    Article  CAS  Google Scholar 

  45. Belfield K D, Hagan D J, Van Stryland E W, Schafer K J, Negres R A. New two-photon absorbing fluorene derivatives: Synthesis and nonlinear optical characterization. Org Lett, 1999, 1(10): 1575–1578

    Article  CAS  Google Scholar 

  46. Morel Y, Irimia A, Najechalski P, Kervella Y, Stéphan O, Baldeck P L, Andraud C. Two-photon absorption and optical power limiting of bifluorene molecule. J Chem Phys, 2001, 114(12): 5391–5396

    Article  CAS  Google Scholar 

  47. Najechalski P, Morel Y, Stéphan O, Baldeck P L. Two-photon absorption spectrum of poly(fluorene). Chem Phys Lett, 2001, 343(1–2): 44–48

    Article  CAS  Google Scholar 

  48. Tan L S, Kannan R, Matuszewski M J, Khur I J, Feld W A, Dang T D, Dombroskie A G, Vaia R A, Clarson S J, He G S, Lin T C, Prasad P N. Functionalization of heterocyclic diphenylamino-based two-photon absorbing materials for microfabrication, data storage, and upcon-verted imaging. In: Belfield K D, Caracci S J, Kajzar F, Lawson C M, Yeates A T, eds. Multiphoton Absorption and Nonlinear Transmission Processes: Materials, Theory, and Applications. Bellingham: Spie-Int Society Optical Engineering, 2003. 171–178

    Google Scholar 

  49. Seybold P, Gouterman M. Porphyrins: XIII: Fluorescence spectra and quantum yields. J Mol Spectrosc, 1969, 31(1–13): 1–13

    Article  CAS  Google Scholar 

  50. Xu C, Webb W W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B, 1996, 13(3): 481–491

    Article  CAS  Google Scholar 

  51. Rumi M, Ehrlich J E, Heikal A A, Perry J W, Barlow S, Hu Z, McCord-Maughon D, Parker T C, Rockel H, Thayumanavan S, Marder S R, Beljonne D, Bredas J L. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives. J Am Chem Soc, 2000, 122(39): 9500–9510

    Article  CAS  Google Scholar 

  52. Baskin J S, Yu H Z, Zewail A H. Ultrafast dynamics of porphyrins in the condensed phase: I. Free base tetraphenylporphyrin. J Phys Chem A, 2002, 106(42): 9837–9844

    Article  CAS  Google Scholar 

  53. Stryer L, Haugland R P. Energy transfer: A spectroscopic ruler. Proc Natl Acad Sci USA, 1967, 58: 719–726

    Article  CAS  Google Scholar 

  54. Devadoss C, Bharathi P, Moore J S. Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient. J Am Chem Soc, 1996, 118(40): 9635–9644

    Article  CAS  Google Scholar 

  55. Gilat S L, Adronov A, Fréchet J M J. Light harvesting and energy transfer in novel convergently constructed dendrimers. Angew Chem, Int Ed, 1999, 38(10): 1422–1427

    Article  CAS  Google Scholar 

  56. Pekkarinen L, Linschitz H. Studies on metastable states of porphyrins. II. Spectra and decay kinetics of tetraphenylporphine, zinc tetra-phenylporphine and bacteriochlorophyll. J Am Chem Soc, 1960, 82(10): 2407–2411

    Article  CAS  Google Scholar 

  57. Bonnett R, McGarvey D J, Harriman A, Land E J, Truscott T G, Winfield U-J. Photophysical properties of meso-tetraphenylporphyrin and some meso-tetra(hydroxyphenyl)porphyrins. Photochem Photo-biol, 1988, 48 (3): 271–276

    Article  CAS  Google Scholar 

  58. Gollnick K, Griesbeck A. Singlet oxygen photooxygenation of furans: Isolation and reactions of (4+2)- cycloaddition products (unsaturated secozonides). Tetrahedron, 1985, 41(11): 2057–2068

    Article  CAS  Google Scholar 

  59. Wilkinson F, Helman W P, Ross A B. Quantum yields for the photo-sensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data, 1993, 22(1): 113–262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnDong Xia.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20773139, 20825314, and 20833008), State Key Project for Fundamental Research (Grant Nos. 2006CB806000 and 2007CB815200), and the Chinese Academy of Sciences (Grant No. KJCX2.Y.W.H06)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Y., Jia, K., Li, B. et al. Enhancement of two-photon absorption cross section and singlet-oxygen generation in porphyrin-cored star polymers. Sci. China Ser. B-Chem. 52, 56–63 (2009). https://doi.org/10.1007/s11426-008-0157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0157-6

Keywords

Navigation