Skip to main content
Log in

Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(II) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(II) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(II) on MX-80 bentonite was mainly dominated by surface complexation, and cation exchange also contributed partly to 63Ni(II) sorption at low pH values. The sorption isotherms were simulated by Langmuir and Freundlich models, and the results indicated that Freundlich isotherm model fitted the sorption data better than the Langmuir isotherm model. The results are crucial to evaluate the sorption and migration of radionickel in MX-80 bentonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. García-Sánchez A, Álvarez-Ayuso E. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Miner Eng, 2002, 15: 539–547

    Article  Google Scholar 

  2. Das N C, Bandyopadhyay M. Removal of copper (II) using vermiculite. Water Environ Res, 1992, 64: 852–857

    Google Scholar 

  3. Vengris T, Binkiene R, Sveikauskaite A. Nickel, copper and zinc removal from waste water by a modified clay sorbent. Appl Clay Sci, 2001, 18: 183–190

    Article  CAS  Google Scholar 

  4. Álvarez-Ayuso E, García-Sánchez A. Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc. Sci Total Environ, 2003, 305: 1–12

    Article  Google Scholar 

  5. Yavuz Ö, Altunkaynak Y, Güzel F, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res, 2003, 37: 948–952

    Article  CAS  Google Scholar 

  6. Cabrera C, Gabaldón C, Marzal P. Sorption characteristics of heavy metal ions by a natural zeolite. J Chem Technol Biotechnol, 2005, 80: 477–481

    Article  CAS  Google Scholar 

  7. Bailey S E, Olin T J, Bricka R M, Adrian E D. A review of potentially low-cost sorbents for heavy metals. Water Res, 1999, 33: 2469–2479

    Article  CAS  Google Scholar 

  8. Grambow B, Fattahi M, Montavon G, Moisan C, Giffaut E. Sorption of Cs, Ni, Pb, Eu(III), Am(III), Cm, Ac(III), Tc(IV), Th, Zr, and U(IV) on MX 80 bentonite: An experimental approach to assess model uncertainty. Radiochim Acta, 2006, 94: 627–636

    Article  CAS  Google Scholar 

  9. Boualia A, Mellah A, Aissaoui T, Menacer K, Silem A. Sorption of organic matter contained in industrial H3PO4 onto bentonite: Batch-contact time and kinetic study. Appl Clay Sci, 1993, 7: 431–445

    Article  CAS  Google Scholar 

  10. Mellah A, Chegrouche S, Setti L. Pretreatment of industrial phosphoric acid by Algerian filter aids. Int J Miner Process, 1994, 41: 295–303

    Article  CAS  Google Scholar 

  11. Wen X H, Du Q, Tang H X. Surface complexation model for the heavy metal adsorption on natural sediment. Environ Sci Technol, 1998, 32: 870–875

    Article  CAS  Google Scholar 

  12. Liu W X, Sun Z X, Forsling W, Du Q, Tang H X. A comparative study of acid-base characteristics of natural illites from different origins. J Colloid Interface Sci, 1999, 219: 48–61

    Article  CAS  Google Scholar 

  13. Herbelin A, Westall J C. FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants form Experimental Data. Version 3.1, Report 94-01. Oregon State University. 1994

  14. Pretorius P J, Linder P W. The adsorption characteristics of δ-manganese dioxide: A collection of diffuse double layer constants for the adsorption of H+, Cu2+, Ni2+, Zn2+, Cd2+ and Pb2+. Appl Geochem, 2001, 16: 1067–1082

    Article  CAS  Google Scholar 

  15. Chang P P, Wang X K, Yu S M, Wu W S. Sorption of Ni(II) on Na-rectorite from aqueous solution: Effect of pH, ionic strength and temperature. Colloids Surf A, 2007, 302: 75–81

    Article  CAS  Google Scholar 

  16. Xu D, Zhou X, Wang X K. Adsorption and desorption of Ni2+ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Appl Clay Sci, 2008, 39: 133–141

    Article  CAS  Google Scholar 

  17. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt J J. Use of spectroscopic techniques for uranium (VI) /montmorillonite interaction modeling. Environ Sci Tech, 2004, 38: 1399–1407

    Article  CAS  Google Scholar 

  18. Pinskii E L. The problem of the mechanism of ion-exchange sorption of heavy metals in soils. Eurasian Soil Sci, 1998, 31: 1223–1230

    Google Scholar 

  19. Echeverría J, Indurain J, Churio E, Garrido J. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloids Surf A, 2003, 218: 175–187

    Google Scholar 

  20. Cotton F, Wilkinson G. Advanced Inorganic Chemistry, 4th ed. New York: Wiley, 1980. 255

    Google Scholar 

  21. Esmadi F, Simm J. Sorption of cobalt (II) by amorphous ferric hydroxide. Colloids Surf A, 1995, 104: 265–270

    Article  CAS  Google Scholar 

  22. Tan X L, Wang X K, Chen C L, Sun A H. Effect of soil humic and fulvic acid, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Appl Radiat Isot, 2007, 65: 375–381

    Article  CAS  Google Scholar 

  23. Donat R, Akdogan A, Erdem E, Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci, 2005, 286: 43–52

    Article  CAS  Google Scholar 

  24. Langmuir I. The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc, 1918, 40: 1361–1403

    Article  CAS  Google Scholar 

  25. Atkins P W. Physical Chemistry, 4th ed. Oxford: Oxford Univ Press, 1990. 995

    Google Scholar 

  26. Shahwan T, Erten H N. Thermodynamic parameters of Cs+ sorption on natural clays. J Radioanal Nucl Chem, 2002, 253: 115–120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangKe Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20501019 and J0630962) and 973 Projects (Grant No. 2007CB936602)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, D., Xu, D., Wang, S. et al. Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength. Sci. China Ser. B-Chem. 52, 362–371 (2009). https://doi.org/10.1007/s11426-008-0145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0145-x

Keywords

Navigation