Skip to main content
Log in

Thermodynamics for nonequilibrium solvation and numerical evaluation of solvent reorganization energy

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

This work presents a thermodynamic method for treating nonequilibrium solvation. By imposing an extra electric field onto the nonequilibrium solvation system, a virtual constrained equilibrium state is prepared. In this way, the free energy difference between the real nonequilibrium state and the constrained equilibrium one is simply the potential energy of the nonequilibrium polarization in the extra electronic field, according to thermodynamics. Further, new expressions of nonequilibrium solvation energy and solvent reorganization energy have been formulated. Analysis shows that the present formulations will give a value of reorganization energy about one half of the traditional Marcus theory in polar solvents, thus the explanation on why the traditional theory tends to overestimate this quantity has been found out. For the purpose of numerical determination of solvent reorganization energy, we have modified Gamess program on the basis of dielectric polarizable continuum model. Applying the procedure to the well-investigated intramolecular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy have been found to be in good agreement with the experimental fittings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer J, Truhlar G. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev, 1999, 99: 2161–2200

    Article  CAS  Google Scholar 

  2. Bredas J L, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer in π-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104: 4971–5004

    Article  CAS  Google Scholar 

  3. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev, 2005, 105: 2999–3094

    Article  CAS  Google Scholar 

  4. Vath P, Zimmt M B. A failure of continuum theory: Temperature dependence of the solvnet reorganization energy of electron transfer in highly polar solvents. J Phys Chem B, 1999, 103: 9130–9140

    Article  CAS  Google Scholar 

  5. Blackbourn R L, Hupp J T. Does Marcus-Hush theory really work? Optical studies of intervalence transfer in acetylene-bridged biferrocene monocation at infinite dilution and at finite ionic strengths. J Phys Chem, 1990, 94: 1788–1793

    Article  CAS  Google Scholar 

  6. Hupp J T, Dong Y, Blackbourn R L, Lu H. Does Marucs-Hush theory really work? The solvent dependence of intervalence charge-transfer energetics in (NH3)5RuII-4,4′-bipyridine-RuIII(NH3)5 5+ in the limit of infinite dilution. J Phys Chem, 1993, 97: 3278–3282

    Article  CAS  Google Scholar 

  7. Miller J R, Calcaterra L T, Closs G L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction reates. J Am Chem Soc, 1984, 106: 3047–3049

    Article  CAS  Google Scholar 

  8. Closs G L, Calcaterra L T, Green N J, Penfield K W, Miller J R. Distance, stereoelectronic effects, and the Marucs inverted region in intramolecular electron transfer in organic radical anions. J Phys Chem, 1986, 90: 3673–3683

    Article  CAS  Google Scholar 

  9. Johnson M D, Miller J R, Green N S, Closs G L. Distance dependence of intramolecular hole and electron transfer in organic radical ions. J Phys Chem, 1989, 93: 1173–1176

    Article  CAS  Google Scholar 

  10. Miller J R, Paulson B P, Bal R, Closs G L. Torsional low-frequency reorganization energy of biphenyl anion in electron transfer reactions. J Phys Chem, 1995, 99: 6923–6925

    Article  CAS  Google Scholar 

  11. Basilevsky M V, Chudinov G E, Rostov I V, Liu Y P, Newton M D. Quantum-chemical evaluation of energy quantities governing electron transfer kinetics: Applications to intramolecular process. J Mol Struct (Theochem), 1996, 371: 191–203

    Article  CAS  Google Scholar 

  12. Basilevsky M V, Rostov I V, Newton M D. A frequency-resolved cavity model (FRCM) for treating equilibrium and non-equilibrium salvation energies. Chem Phys, 1998, 232: 189–199

    Article  CAS  Google Scholar 

  13. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S J, Windus T L, Dupuis M, Montgomery J A. General atomic and molecular electronic structure system. J Comput Chem, 1993, 14: 1347–1363

    Article  CAS  Google Scholar 

  14. Li H, Jensen J H. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: New energy gradients and molecular surface tessellation. J Comput Chem, 2004, 25: 1449–1462

    Article  CAS  Google Scholar 

  15. Leontovich M A. An Introduction to Thermodynamics, 2nd ed. Moscow: Gittl Publ, 1950, §29 and §30

    Google Scholar 

  16. Jackson J D. Classical electrodynamics, 3rd ed. New York: John Wiley & Sons, 1999

    Google Scholar 

  17. Cammi R, Tomasi J. Remarks on the use of apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comp Chem, 1995, 16: 1449–1458

    Article  CAS  Google Scholar 

  18. Cossi M, Barone V. Separation between fast and solw polarization in coninuum solvation models. J Phys Chem. A, 2000, 104: 10614–10622

    Article  CAS  Google Scholar 

  19. Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molucular potentials for the prevision of solvent effects. Chem Phys, 1981, 55: 117–129

    Article  CAS  Google Scholar 

  20. Hoshi H, Sakurai M, Inoue Y, Chujo R. Medium effects on the molucular electronic sturcture. I. The formulation of a theory for the estimation of a molecular electronic structure surrounded by an anisotropic medium. J Chem Phys, 1987, 87: 1107–1115

    Article  CAS  Google Scholar 

  21. Dougherty R C. A perturbation molecular orbital theory of electron-transfer rates. J Chem Phys, 1997, 106: 2621–2626

    Article  CAS  Google Scholar 

  22. Li X Y, He F C. Electron transfer between biphenyl and biphenyl anion radicals: reorganization energies and electron transfer matrix elements. J Comput Chem, 1999, 20: 597–603

    Article  Google Scholar 

  23. Farazdel A, Dupuis M, Clementi E, Aviram A. Electric field induced intramolecular electron transfer in spiro π-electron systems and their suitability as molecualr electronic devices. J Am Chem Soc, 1990, 112: 4206–4214

    Article  CAS  Google Scholar 

  24. Kumar K, Kurnikov I V, Beratan D N, Waldeck D H, Zimmt M B. Use of modern electron transfer theories to determine electronic coupling matrix elements in intramolecular systems. J Phys Chem A, 1998, 102: 5529–5541

    Article  CAS  Google Scholar 

  25. Kurnikov I V, Zusman L D, Kurnikova M G, Farid R S, Beratan D N. Structural fluctuations, spin, reorganization energy, and tunneling energy control of intramocular electron transfer: The surprising case of electron transfer in a d8-d8 bimetallic system. J Am Chem Soc, 1997, 119, 5690–5700

    Article  CAS  Google Scholar 

  26. Lu S Z, Li X Y, Liu J F. Molecular orbital analysis in evalation of electron-transfer matrix element by Koopmans’ theory. J Phys Chem A, 2004, 108: 4125–4131

    Article  CAS  Google Scholar 

  27. Li X Y, Tang X S, He F C. Electron transfer in poly(p-phenylene) oligomers: Effect of external electirc field and application of Koopmans theorem. Chem Phys, 1999, 248: 137–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangYuan Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20533070 and 20625311)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, J., Ma, J. et al. Thermodynamics for nonequilibrium solvation and numerical evaluation of solvent reorganization energy. Sci. China Ser. B-Chem. 51, 1246–1256 (2008). https://doi.org/10.1007/s11426-008-0138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0138-9

Keywords

Navigation