Skip to main content
Log in

Protonation effects on electron transport through diblock molecular junctions: A theoretical study

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Diblock oligomers are widely used in molecular electronics. Based on fully self-consistent nonequilibrium Green’s function method and density functional theory, we study the electron transport properties of the molecular junction with a dipyrimidinyl-diphenyl (PMPH) diblock molecule sandwiched between two gold electrodes. Effects of different kinds of molecule-electrode anchoring geometry and protonation of the PMPH molecule are studied. Protonation leads to both conductance and rectification enhancements. However, the experimentally observed rectifying direction inversion is not found in our calculation. The preferential current direction is always from the pyrimidinyl to the phenyl side. Our calculations indicate that the protonation of the molecular wire is not the only reason of the rectification inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nitzan A, Ratner M A. Electron transport in molecular wire junctions. Science, 2003, 300: 1384–1389

    Article  CAS  Google Scholar 

  2. Joachim C, Ratner M A. Molecular electronics: some views on transport junctions and beyond. Proc Natl Acad Sci U S A, 2005, 102: 8801–8808

    Article  CAS  Google Scholar 

  3. Metzger R M. Unimolecular electrical rectifiers. Chem Rev, 2003, 103: 3803–3834

    Article  CAS  Google Scholar 

  4. Aviram A, Ratner M A. Molecular rectifiers. Chem Phys Lett, 1974, 29: 277–283

    Article  CAS  Google Scholar 

  5. Ng M-K, Lee D-C, Yu L. Molecular diodes based on conjugated diblock co-oligomers. J Am Chem Soc, 2002, 124: 11862–11863

    Article  CAS  Google Scholar 

  6. Ng M-K, Yu L. Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew Chem Int Ed, 2002, 41: 3598–3601

    Article  CAS  Google Scholar 

  7. Jiang P, Morales G M, You W, Yu L. Synthesis of diode molecules and their sequential assembly to control electron transport. Angew Chem Int Ed, 2004, 43: 4471–4475

    Article  CAS  Google Scholar 

  8. Morales G M, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L. Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc, 2005, 127: 10456–10457

    Article  CAS  Google Scholar 

  9. Taylor J, Brandbyge M, Stokbro K. Theory of rectification in tour wires: the role of electrode coupling. Phys Rev Lett, 2002, 89: 138301-1–4

    Article  Google Scholar 

  10. Li Z, Kosov D S. Dithiocarbamate anchoring in molecular wire junctions: a first principles study. J Chem Phys B, 2006, 110: 9896–9898

    Google Scholar 

  11. Li Z, Kosov D S. Orbital interaction mechanisms of conductance enhancement and rectification by dithiocarboxylate anchoring group. J Chem Phys B, 2006, 110: 19116–19120

    Article  CAS  Google Scholar 

  12. Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B, 2001, 63: 245407-1–13

    Google Scholar 

  13. Brandbyge M, Mozos J-L, Ordejon P, Taylor J, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65: 165401-1–17

    Article  Google Scholar 

  14. Xue Y, Ratner M A. Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys Rev B, 2003, 68: 115406-1–18

    Google Scholar 

  15. Chen F, He J, Nuckolls C, Roberts T, Klare J E, Lindsay S. A molecular switch based on potential-induced changes of oxidation state. Nano Lett, 2005, 5: 503–506

    Article  CAS  Google Scholar 

  16. Girard Y, Kondo M, Yoshizawa K. Theoretical study of a neutral, doubly protonated, and doubly deprotonated porphyrin dithiolate used as a molecular switch. Chem Phys, 2006, 327: 77–84

    Article  CAS  Google Scholar 

  17. Soler J M, Artacho E, Gale J, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D. The siesta method for ab initio order-N materials simulation. J Phys: Condens Matter, 2002, 14: 2745–2779

    Article  CAS  Google Scholar 

  18. Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 1991, 43: 1993–2006

    Article  CAS  Google Scholar 

  19. Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 1981, 23: 5048–5079

    Article  CAS  Google Scholar 

  20. ATK version 2.0, Atomistix A/S (www.atomistix.com).

  21. Nielsen S K, Brandbyge M, Hansen K, Stokbro K, van Ruitenbeek J M, Besenbacher F. Current-voltage curves of atomic-sized transition metal contacts: an explanation of why au is ohmic and pt is not. Phys Rev Lett, 2002, 89: 066804-1–4

    Article  Google Scholar 

  22. Huang J, Li Q X, Ren H, Su H B, Yang J L. Single quintuple bond [PhCrCrPh] molecule as a possible molecular switch. J Chem Phys, 2006, 125: 184713-1–4

    Google Scholar 

  23. Landauer R. Electrical resistance of disordered one dimensional lattices. Philos Mag, 1970, 21: 863–867

    Article  CAS  Google Scholar 

  24. Wu X J, Li Q X, Huang J, Yang J L. Nonequilibrium electronic transport of 4,4′-bipyridine molecular junction. J Chem Phys, 2005, 123: 184712-1–6

    Google Scholar 

  25. Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L. Rectification mechanism in diblock oligomer molecular diodes. Phys Rev Lett, 2006, 96: 096803-1–4

    Article  Google Scholar 

  26. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. GAUSSIAN03 Revision C.02; Gaussian Inc. Wallingford, CT, 2004

    Google Scholar 

  27. Li Z, Kosov D S. Nature of well-defined conductance of amine-anchored molecular junctions: Density function calculations. Phys Rev B, 2007, 76: 035415-1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinLong Yang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10674121, 20773112, and 20533030), National Key Basic Research Program (Grant No. 2006CB922004), Science and Technological Fund of Anhui Province for Outstanding Youth (Grant No. 08040106833), the Chinese Academy of Sciences, the USTC-HP HPC Project, SCCAS and Shanghai Supercomputer Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Huang, J., Li, Q. et al. Protonation effects on electron transport through diblock molecular junctions: A theoretical study. Sci. China Ser. B-Chem. 51, 1159–1165 (2008). https://doi.org/10.1007/s11426-008-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0134-0

Keywords

Navigation