Skip to main content
Log in

Molecular dynamics simulations of LiCl association and NaCl association in water by means of ABEEM/MM

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Constrained molecular dynamics simulations have been used to investigate the LiCl and NaCl ionic association in water in terms of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The simulations make use of the seven-site fluctuating charge and flexible ABEEM-7P water model, based on which an ion-water interaction potential has been constructed. The mean force and the potential of mean force for LiCl and NaCl in water, the charge distributions, as well as the structural and dynamical properties of contact ion pair dissociation have been investigated. The results are reasonable and informative. For LiCl ion pair in water, the solvent-separated ion pair configurations are more stable than contact ion pair configurations. The calculated PMF for NaCl in water indicates that contact ion pair and solvent-separated ion pair configurations are of comparable stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon J D, Peters K S. Picosecond studies of organic photoreactions. Acc Chem Res, 1984, 17: 277–283

    Article  CAS  Google Scholar 

  2. Spears K G, Gray T H, Huang D. Ionic photodissociation and picosecond solvation dynamics of contact ion pairs. J Phys Chem, 1986, 90: 779–790

    Article  CAS  Google Scholar 

  3. Spohn P D, Brill T B. Raman spectroscopy of the species in concentrated aqueous solutions of zinc nitrate, calcium nitrate, cadmium nitrate, lithium nitrate and sodium nitrate up to 450 degree C and 30 Mpa. J Phys Chem, 1989, 93: 6224–6231

    Article  CAS  Google Scholar 

  4. Fleissner G, Hallbrucker A, Mayer E. Increasing contact ion pairing in the supercooled and glassy states of “dilute” aqueous magnesium, calcium, and strontium nitrate solution: Implications for biomolecules. J Phys Chem, 1993, 97: 4806–4814

    Article  CAS  Google Scholar 

  5. Simonet V, Calzavara Y, Hazemann J L, Argoud R, Geaymond O, Raoux D. X-ray absorption spectroscopy studies of ionic association in aqueous solutions of zinc bromide from normal to critical conditions. J Chem Phys, 2002, 117: 2771–2781

    Article  CAS  Google Scholar 

  6. Carnie S L, Patey G N. Fluids of polarizable hard spheres with dipoles and tetrahedral quadrupoles integral equation results with application to liquid water. Mol Phys, 1982, 47: 1129–1151

    Article  CAS  Google Scholar 

  7. Pettitt B M, Rossky P J. Alkali halides in water: Ion-solvent correlations and ion-ion potentials of mean force at infinite dilution. J Chem Phys, 1986, 84: 5836–5844

    Article  CAS  Google Scholar 

  8. Morita T, Ladanyi B M, Hynes J T. Polar solvent contributions to activation parameters for model ionic reactions. J Phys Chem, 1989, 93: 1386–1392

    Article  CAS  Google Scholar 

  9. Hummer G, Soumpasis D M. An extended RISM study of simple electrolytes: pair correlations in a NaCl-SPC water model. Mol Phys, 1992, 75: 633–651

    Article  CAS  Google Scholar 

  10. Kovalenko A, Hirata F. Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach. J Chem Phys, 2000, 112: 10391–10402

    Article  CAS  Google Scholar 

  11. Belch A C, Berkowitz M, McCammon J A. Solvation structure of a sodium chloride ion pair in water. J Am Chem Soc, 1986, 108: 1755–1761

    Article  CAS  Google Scholar 

  12. Karim O A, McCammon J A. Dynamics of a sodium chloride ion pair in water. J Am Chem Soc, 1986, 108: 1762–1766

    Article  CAS  Google Scholar 

  13. Jorgensen W L, Buckner J K, Houston S E, Rossky P J. Hydration and energetics for (CH3)3CCl ion pairs in aqueous solution. J Am Chem Soc, 1987, 109: 1891–1899

    Article  CAS  Google Scholar 

  14. Buckner J K, Jorgensen W L. Energetics and hydration of the constituent ion pairs of tetramethylammonium chloride. J Am Chem Soc, 1989, 111: 2507–2516

    Article  CAS  Google Scholar 

  15. Ciccotti G, Ferrario M, Hynes J T, Kapral R. Dynamics of ion pair interconversion in a polar solvent. J Chem Phys, 1990, 93: 7137–7147

    Article  CAS  Google Scholar 

  16. Smith D E, Dang L X. Computer simulations of NaCl association in polarizable water. J Chem Phys, 1994, 100: 3757–3766

    Article  CAS  Google Scholar 

  17. Rey R, Guàrdia E. Dynamical aspects of the Na+-Cl ion pair association in water. J Phys Chem, 1992, 96: 4712–4718

    Article  CAS  Google Scholar 

  18. Dang L X, Rice J E, Kollmann P A. The effect of water models on the interaction of the sodium-chloride ion pair in water: Molecular dynamics simulations. J Chem Phys, 1990, 93: 7528–7529

    Article  CAS  Google Scholar 

  19. Smith D E, Haymet A D J. Structure and dynamics of water and aqueous solutions: The role of flexibility. J Chem Phys, 1992, 96: 8450–8459

    Article  CAS  Google Scholar 

  20. Berkowitz M, Karim O A, McCammon J A, Rossky P J. Sodium chloride ion pair interaction in water: Computer simulation. Chem Phys Lett, 1984, 105: 577–580

    Article  CAS  Google Scholar 

  21. Zhu S-B, Robinson G W. Molecular-dynamics computer simulation of simulation of an aqueous NaCl solution: Structure. J Chem Phys, 1992, 97: 4336–4348

    Article  CAS  Google Scholar 

  22. Bader J S, Chandler D. Computer simulation study of the mean forces between ferrous and ferric ions in water. J Phys Chem, 1992, 96: 6423–6427

    Article  CAS  Google Scholar 

  23. Chialvo A A, Cummings P T, Cochran H D, Simonson J M, Mesmer R E. Na+-Cl ion pair association in supercritical water. J Chem Phys, 1995, 103: 9379–9387

    Article  CAS  Google Scholar 

  24. Shinto H, Morisada S, Miyahara M, Higashitani K. A reexamination of mean force potentials for the methane pair and the constituent ion pairs of NaCl in water. J Chem Eng Jpn, 2003, 36: 57–65

    Article  CAS  Google Scholar 

  25. Zhang Z G, Duan Z H. Lithium Chloride ionic association in dilute aqueous solution: A constrained molecular dynamics study. Chem Phys, 2004, 297: 221–233

    Article  CAS  Google Scholar 

  26. Torrie G M, Valleau J P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys, 1977, 23: 187–199

    Article  Google Scholar 

  27. Pangali C, Rao M, Berne B J. A Monte Carlo simulation of the hydrophobic interaction. J Chem Phys, 1979, 71: 2975–2981

    Article  CAS  Google Scholar 

  28. Yang Z Z, Wu Y, Zhao D X. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. J Chem Phys, 2004, 120: 2541–2557

    Article  CAS  Google Scholar 

  29. Wu Y, Yang Z Z. Atom-bond electronegativity equalization method fused into molecular mechanics. II. A seven-site fluctuating charge and flexible body water potential function for liquid water. J Phys Chem A, 2004, 108: 7563–7576

    Article  CAS  Google Scholar 

  30. Yang Z Z, Qian P. A study of N-methylacetamide in water cluster: Based on atom-bond electronegativity equalization method fuse into molecular mechanics. J Chem Phys, 2006, 125(6): 064311–064326

    Article  Google Scholar 

  31. Qian P, Yang Z Z. Application of ABEEM/MM model to study the properties of the water clusters (H2O)n, n=7−10. Sci Chin Ser B-Chem, 2007, 50: 190–204

    Article  CAS  Google Scholar 

  32. Li X, Yang Z Z. Study of lithium cation in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J Phys Chem A, 2005, 109: 4102–4111

    Article  CAS  Google Scholar 

  33. Li X, Yang Z Z. Hydration of Li+-ion in atom-bond electronegativity equalization method-7p water: A molecular dynamics simulation study. J Chem Phys, 2005, 122: 084514–084528

    Article  Google Scholar 

  34. Yang Z Z, Li X. Ion solvation in water from molecular dynamics simulation from the ABEEM/MM force field. J Phys Chem A, 2005, 109: 3517–3520

    Article  CAS  Google Scholar 

  35. Bultinck P, Langenaeker W, Lahorte P, Proft F D, Geerlings P, Waroquier M, Tollenaere J P. The electronegativity equalization method I: Parameterization and validation for atomic charge calculations. J Phys Chem A, 2002, 106: 7887–7894

    Article  CAS  Google Scholar 

  36. Bultinck P, Langenaeker W, Lahorte P, Proft F D, Geerlings P, Alsenoy C V, Tollenaere J P. The electronegativity equalization method II: Application of different atomic charge schemes. J Phys Chem A, 2002, 106: 7895–7901

    Article  CAS  Google Scholar 

  37. Chelli R, Procacci P. A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle. J Chem Phys, 2002, 117: 9175–9181

    Article  CAS  Google Scholar 

  38. Smirnov K S, van de Graaf B. Consistent implementation of the electronegativity equalization method in molecular mechanics and molecular dynamics. J Chem Soc Faraday Trans, 1996, 92: 2469–2474

    Article  CAS  Google Scholar 

  39. Yang Z Z, Wang C S. Atom-bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J Phys Chem A, 1997, 101: 6315–6321

    Article  CAS  Google Scholar 

  40. Wang C S, Yang Z Z. Atom-bond electronegativity equalization method. II. Lone-pair electron model. J Chem Phys, 1999, 110: 6189–6197

    Article  CAS  Google Scholar 

  41. Yang Z Z, Wang C S. Atom-bond electronegativity equalization method and its applications based on density functional theory. J Theor Comput Chem, 2003, 2: 273–299

    Article  CAS  Google Scholar 

  42. Yang Z Z, Cui B Q. Atomic charge calculation of metallobiomolecules in terms of the ABEEM method. J Chem Theory Comput, 2007, 3: 1561–1568

    Article  CAS  Google Scholar 

  43. Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A, Haak J R. Ionization potentials of polyacene molecules in micellar systems or in liquid homogeneous solutions. J Chem Phys, 1984, 81: 3684–3689

    Article  CAS  Google Scholar 

  44. Steinbach P J, Brooks B R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem, 1994, 15: 667–683

    Article  CAS  Google Scholar 

  45. Hynes J T, Baer M, eds. The Theory of Chemical Reaction Dynamics, Chemical Rubber, Vol. IV, Boca Raton, FL, 1985. 171

  46. Carter E A, Cicotti G, Hynes J T, Kapral R. Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett, 1989, 156: 472–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongZhi Yang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20633050 and 20703022)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gong, L. & Yang, Z. Molecular dynamics simulations of LiCl association and NaCl association in water by means of ABEEM/MM. Sci. China Ser. B-Chem. 51, 1221–1230 (2008). https://doi.org/10.1007/s11426-008-0129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0129-x

Keywords

Navigation