Skip to main content
Log in

Recent studies on chemistry of novel μ-CO-containing butterfly Fe/E (E = S, Se, Te) cluster salts

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

This article describes recent developments in chemical study on a series of butterfly-shaped μ-CO-containing Fe/E (E = S, Se, Te) cluster salts. These salts include eleven novel cluster anions, which are the single butterfly one μ-CO-containing [(μ-RE)(μ-CO)Fe2(CO)6] (A), the double butterfly two μ-CO-containing {[(μ-CO)Fe2(CO)6]2(μ-EZE-μ)}2− (B, E = S; C, E = Se), the triple butterfly three μ-CO-containing {[(μ-CO)Fe2(CO)6]3[(μ-SCH2CH2)3N]}3− (D), {[(μ-CO)Fe2(CO)6]3[1,3,5-(μ-SCH2)3C6H3]}3− (E), {[(μ-CO)Fe2(CO)6]3[(μ-SCH2)3CMe]}3− (F), the double butterfly one μ-CO-containing {[(μ-CO)Fe2(CO)6] [Fe2(CO)6][(μ-SCH2)3CMe]} (G) derived in situ from F, the quadruple butterfly four μ-CO-containing {[(μ-CO)Fe2(CO)6]4[1,2,4,5-(μ-SCH2)4C6H2]}4− (H), the triple butterfly two μ-CO-containing {[(μ-CO)Fe2(CO)6]2 [Fe2(CO)6][1,2,4,5-(μ-SCH2)4C6H2]}2− (I) derived in situ from H, the quadruple butterfly four μ-CO-containing {[(μ-CO)Fe2(CO)6]4[(μ-SCH2)4C]}4− (J), and the triple butterfly two μ-CO-containing {[(μ-CO)Fe2 (CO)6]2[Fe2(CO)6][(μ-SCH2)4C]}2− (K) derived in situ from J. This article describes not only the synthetic methods for formation of such anionic cluster (A-K) salts, but also their novel reactions leading to various new types of butterfly Fe/E cluster complexes. All these findings described in this article are important both theoretically and practically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song L C. Synthesis of butterfly-shaped Fe/E (E = S, Se, Te) cluster complexes from in situ reactions of novel organometallic anions of type [(μ-RE)(μ-CO)Fe2(CO)6] (E = S, Se, Te). Trends Organomet Chem, 1999, 3: 1–20

    Article  CAS  Google Scholar 

  2. Darensbourg M Y, Lyon E J, Smee J J. The bio-organometallic chemistry of active site iron in hydrogenases. Coord Chem Rev, 2000, 206–207: 533–561

    Article  Google Scholar 

  3. Evans D J, Pickett C J. Chemistry and the hydrogenases. Chem Soc Rev, 2003, 32(5): 268–275

    Article  Google Scholar 

  4. Song L C. Investigations on butterfly Fe/S cluster S-centered anions (μ-S−)2Fe2(CO)6, (μ-S−)(μ-RS)Fe2(CO)6, and related species. Acc Chem Res, 2005, 38(1): 21–28

    Article  CAS  Google Scholar 

  5. Cammack R. Hydrogenase sophistication. Nature, 1999, 397(6716): 214–215

    Article  CAS  Google Scholar 

  6. Adams M W W, Stiefel E I. Biochemistry-biological hydrogen production: Not so elementary. Science, 1998, 282(5395): 1842–1843

    Article  CAS  Google Scholar 

  7. Frey M. Hydrogenases: Hydrogen-activating enzymes. ChemBio-Chem, 2002, 3: 153–160

    CAS  Google Scholar 

  8. Alper J. Water splitting goes Au naturel. Science, 2003, 299(5613):1686–1687

    Article  CAS  Google Scholar 

  9. Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from clostridium pasteurianum to 1.8 angstrom resolution. Science, 1998, 282(5395): 1853–1858

    Article  CAS  Google Scholar 

  10. Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Structure, 1999, 7(1): 13–23

    Article  CAS  Google Scholar 

  11. Seyferth D, Womack G B, Dewan J C. A general route to novel dinuclear iron carbonyl complexes containing alkanethiolate and bridging organic ligands. Organometallics, 1985, 4(2): 398–400

    Article  CAS  Google Scholar 

  12. Seyferth D, Womack G B, Archer C M, Dewan J C. A simple route to hexacarbonyldiiron complexes containing a bridging thiolate and an organic bridging ligand by means of [(μ-RS) (μ-CO)Fe2(CO)6] intermediates. Organometallics, 1989, 8(2): 430–442

    Article  CAS  Google Scholar 

  13. Song L C, Yan C G, Hu Q M, Huang X Y. Formation of novel tellurium-containing anions [(μ-RTe)(μ-CO)Fe2(CO)6 ] and synthesis of Fe/Te clusters (μ-RTe)(μ-σ,π -PhC=CH2)Fe2(CO)6, (μ-RTe)2Fe2(CO)6, and [(μ-RTe)Fe2(CO)6]2(μ-Te-Te-μ). X-ray crystal structure of [(μ-PhTe)Fe2(CO)6]2(μ-Te-Te-μ). Organometallics, 1997, 16(17): 3769–3774

    Article  CAS  Google Scholar 

  14. Song L C, Lu G L, Hu Q M, Qin X D, Sun C X, Yang J, Sun J. Synthesis of doubly-bridged Fe/Se and Fe/Te complexes via reactions of the [MgX]+ salts of anions [(μ-RE)(μ-CO)Fe2(CO)6] (E = Se,Te): Crystal structure of (μ-p-MeC6H4Te)(μ-PhC=NPh)Fe2(CO)6. J Organomet Chem, 1998, 571(1): 55–63

    Article  CAS  Google Scholar 

  15. Song L C, Lu G L, Hu Q M, Fan H T, Chen Y, Sun J. Formation and reactions of novel types of bridging sulfido anions, (μ-RE)(μ-S) [Fe2(CO)6]24-S) (E = S, Se): Synthesis and structures of double- and triple-butterfly Fe/E cluster complexes. Organometallics, 1999, 18(17): 3258–3260

    Article  CAS  Google Scholar 

  16. Song L C, Lu G L, Hu Q M, Yang J, Sun J. Synthesis of double and multiple butterfly Fe/E (E = S, Se, Te) cluster complexes via reactions of complex anions [(μ-RE)(μ-CO)Fe2(CO)6] (E = S, Se, Te). Crystal structures of (μ-p-MeC6H4Se)(μ-MeS)[Fe2(CO)6]24-S) and {(μ-t- BuS)[Fe2(CO)6]24-S)}2[(μ-p-SCH2)2C6H4]. J Organomet Chem, 2001, 623(1–2): 56–64

    Article  CAS  Google Scholar 

  17. Seyferth D, Kiwan A M. Preparation of S-bonded iron carbonyl derivatives of monothiocarboxylic acids. J Organomet Chem, 1985, 286(2): 219–223

    Article  CAS  Google Scholar 

  18. Song L C, Lu G L, Hu Q M, Sun J. Synthesis of double and quadruple butterfly Fe/S cluster complexes via a novel type of reaction of anions (μ-RS)(μ-S)[Fe2(CO)6]24-S) with succinyl chloride. Organometallics, 1999, 18(26): 5429–5431

    Article  CAS  Google Scholar 

  19. Seyferth D, Henderson R S, Song L C. Chemistry of μ-dithio-bis (tricarbonyliron), a mimic of inorganic disulfides. 1. Formation of di-μ-thiolato-bis(tricarbonyliron) dianion. Organometallics, 1982, 1(1): 125–133

    Article  CAS  Google Scholar 

  20. Shaver A, Fitzpatrick P J, Steliou K, Butler I S. Reductive decyclization of organosulfur compounds. Preparation and crystal structure of μ,μ′-dithiolato-methanehexacarbonyldiiron(I). J Am Chem Soc, 1979, 101(5): 1313–1315

    Article  CAS  Google Scholar 

  21. Song L C, Fan H T, Hu Q M. The first example of macrocycles containing butterfly transition metal cluster cores via novel tandem reactions. J Am Chem Soc, 2002, 124(17): 4566–4567

    Article  CAS  Google Scholar 

  22. Song L C, Fan H T, Hu Q M, Yang Z Y, Sun Y, Gong F H. Formation and chemical reactivities of a new type of double-butterfly [{Fe2(μ-CO)(CO)6}2(μ-SZS-μ)]2−: Synthetic and structural studies on novel linear and macrocyclic butterfly Fe/E (E = S, Se) cluster complexes. Chem Eur J, 2003, 9(1): 170–180

    Article  CAS  Google Scholar 

  23. Song L C, Gong F H, Meng T, Ge J H, Cui L N, Hu Q M. General synthetic route to double-butterfly Fe/S cluster complexes via reactions of the dianions {[(μ-CO)Fe2(CO)6]2(μ-SZS-μ)}2− with electrophiles. Organometallics, 2004, 23(4): 823–831

    Article  CAS  Google Scholar 

  24. Song L C, Guo D S, Hu Q M, Huang X Y. The First examples of organometallic crown ethers containing redox-active tetrahedral Mo2Fe(μ3-S) cluster cores via a novel self-assembly cyclization reaction. Organometallics, 2000, 19(6): 960–962

    Article  CAS  Google Scholar 

  25. Lehn J M. Supramolecular Chemistry, Concepts and Perspective. Weinheim: Wiley-VCH, 1995

    Google Scholar 

  26. Song L C, Zeng G H, Mei S Z, Lou S X, Hu Q M. Synthetic and structural investigations on double- and single-butterfly Fe/E (E = S, Se) cluster complexes containing diselenolate ligands. Organometallics, 2006, 25(14): 3468–3473

    Article  CAS  Google Scholar 

  27. Song L C, Cheng J, Hu Q M, Gong F H, Bian H Z, Wang L X. Reactions of the three-μ-CO-containing trianions {[Fe2(μ-CO)(CO)6]3 [(μ-SCH2CH2)3N]}3− and {[Fe2(μ-CO)(CO)6]3[1,3,5-(μ-SCH2)3 C6H3]}3− to give starlike complexes terminated with butterfly Fe/S cluster cores. Organometallics, 2005, 24(4): 472–474

    Article  CAS  Google Scholar 

  28. Song L C, Cheng J, Gong F H, Hu Q M, Yan J. Synthesis and characterization of starlike complexes containing three terminal butterfly Fe/S cluster cores generated via reactions of the three-μ-CO-containing trianions {[(μ-CO)Fe2(CO)6]3[(μ-SCH2CH2)3N]}3− and {[(μ-CO)Fe2(CO)6]3[1,3,5-(μ-SCH2)3C6H3]}3− with electrophiles. Organometallics, 2005, 24(15): 3764–3771

    Article  CAS  Google Scholar 

  29. Song L C, Cheng J, Yan J, Wang H T, Liu X F, Hu Q M. Two novel bridgehead-C-substituted diiron propanedithiolate complexes as active site models for Fe-only hydrogenases. Organometallics, 2006, 25(7): 1544–1547

    Article  CAS  Google Scholar 

  30. Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. J Am Chem Soc, 2001, 123(38): 9476–9477

    Article  CAS  Google Scholar 

  31. Mejia-Rodriguez R, Chong D, Reibenspies J H, Soriaga M P, Darensbourg M Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: Iron hydrogenase model complexes. J Am Chem Soc, 2004, 126(38): 12004–12014

    Article  CAS  Google Scholar 

  32. Capon J F, Gloaguen F, Schollhammer P, Talarmin J. Catalysis of the electrochemical H2 evolution by di-iron sub-site models. Coord Chem Rev, 2005, 249(15–16): 1664–1676

    Article  CAS  Google Scholar 

  33. Song L C, Fang X N, Li C G, Yan J, Bao H L, Hu Q M. Novel μ-CO-containing butterfly Fe/S cluster anions generated from tetrathiols, Fe3(CO)12, and Et3N: Their reactions with electrophiles to give neutral butterfly Fe/S cluster complexes. Organometallics, 2008, 27(13): 3225–3231

    Article  CAS  Google Scholar 

  34. Song L C, Liu J T, Wang J T. Studies on reaction of iron carbonyl- mercaptan-triethylamine system: Synthesis of μ-acyl or μ-alkenyl Fe-S complexes and kinetics for CO extrusion reaction. Acta Chim Sin, 1990, 48(2): 110–115

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiCheng Song.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20372034 & 20772059) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070055005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L. Recent studies on chemistry of novel μ-CO-containing butterfly Fe/E (E = S, Se, Te) cluster salts. Sci. China Ser. B-Chem. 52, 1–14 (2009). https://doi.org/10.1007/s11426-008-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0122-4

Keywords

Navigation