Skip to main content
Log in

Multi-walled carbon nanotubes based catalyst plasmon resonance light scattering analysis of tetracycline hydrochloride

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

It was found that multi-walled carbon nanotubes (MWNTs) could catalyze the redox reaction between chlorauric acid (HAuCl4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). By measuring the plasmon resonance light scattering (PRLS) signals of the resulting Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4–26 μmol/L, a correlated coefficient (r) of 0.9955, and a limit of detection (3σ) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 98.3%–102.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  Google Scholar 

  2. Zhang M, Mullens C, Gorski W. Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. Anal Chem, 2007, 79(6): 2446–2450

    Article  CAS  Google Scholar 

  3. Wang J, Liu G, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc, 2004, 126(10): 3010–3011

    Article  CAS  Google Scholar 

  4. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand J P, Gennaro R, Prato M, Bianco A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed, 2005, 44(39): 6358–6362

    Article  CAS  Google Scholar 

  5. Wang Z H, Liang Q L, Wang Y M, Luo G A. Carbon nanotube-in-tercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem, 2003, 540: 129–134

    Article  CAS  Google Scholar 

  6. Arribas A S, Bermejo E, Chicharro M, Zapardiel A, Luque G L, Ferreyra N F, Rivas G A. Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in poly-ethylenimine as detectors in flow systems. Anal Chim Acta, 2007, 596(2): 183–194

    Article  CAS  Google Scholar 

  7. Lin Y, Lu F, Tu Y, Ren Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett, 2004, 4(2): 191–195

    Article  CAS  Google Scholar 

  8. Zhang M, Mullens C, Gorski W. Insulin oxidation and determination at carbon electrodes. Anal Chem, 2005, 77(19): 6396–6401

    Article  CAS  Google Scholar 

  9. Zhang M, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal Chem, 2005, 77(13): 3960–3965

    Article  CAS  Google Scholar 

  10. Zhang M, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J Am Chem Soc, 2005, 127(7): 2058–2059

    Article  CAS  Google Scholar 

  11. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong J D, Kim S N, Gillespie J, Gutkind J S, Papadimitrakopoulos F, Rusling J F. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc, 2006, 128(34): 11199–11205

    Article  CAS  Google Scholar 

  12. Du B A, Li Z P, Liu C H. One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew Chem Int Ed, 2006, 45(1): 1–5

    Article  Google Scholar 

  13. Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. PNAS, 2004, 101(39): 14036–14039

    Article  CAS  Google Scholar 

  14. Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem, 2002, 74(7): 1624–1628

    Article  CAS  Google Scholar 

  15. Ao L, Gao F, Pan B, He R, Cui D. Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Anal Chem, 2006, 78(4): 1104–1106

    Article  CAS  Google Scholar 

  16. Shen X W, Huang C Z, Li Y F. Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid. Talanta, 2007, 72(4): 1432–1437

    Article  CAS  Google Scholar 

  17. Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: Assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem, 2005, 77(6): 1566–1571

    Article  CAS  Google Scholar 

  18. Aslan K, Holley P, Davies L, Lakowicz J R, Geddes C D. Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing. J Am Chem Soc, 2005, 127(34): 12005–12121

    Article  Google Scholar 

  19. Wu L P, Li Y F, Huang C Z, Zhang Q. Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem, 2006, 78(15): 5570–5577

    Article  CAS  Google Scholar 

  20. Liu S P, Yang Z, Liu Z F, Liu J T, Shi Y. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal Chim Acta, 2006, 572: 283–289

    Article  CAS  Google Scholar 

  21. Yang T, Wang L J, Zhao J, Huangfu W G. Detection of tetracyclines residues in aquatic product by HPLC. Chem Anal Meter (in Chinese), 2007, 16(2): 35–36

    Google Scholar 

  22. Pei C J, Zhang Z J, Liu W. Determination of tetracycline in fish and shrimp by chemiluminescence micro-flow injection on a chip. J Instru Anal (in Chinese), 2006, 25(3): 83–85

    CAS  Google Scholar 

  23. Liu Y H, Zhang C P, Men L Q, Liu Z Z, Wang S H. Determination of tetracycline antibiotics residues in chicken muscle by liquid chromatography-tandem mass spectrometry. Chinese J Chromat (in Chinese), 2006, 24(3): 171–173

    CAS  Google Scholar 

  24. Xing X P. Trace determination of tetracyclines in eggs by capillary electrophoresis with electrochemical detection. J Yancheng Inst Tech Natur Sci Ed (in Chinese), 2006, 19(4): 16–19

    CAS  Google Scholar 

  25. Wang X, Liu H, Jin Y, Chen C. Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts. J Phys Chem B, 2006, 110(21): 10236–10240

    Article  CAS  Google Scholar 

  26. He P, Bayachou Me. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir, 2005, 21(13): 6086–6092

    Article  CAS  Google Scholar 

  27. Cai C X, Chen J. Direct electron transfer of redox proteins and enzymes promoted by carbon nanotubes. Electrochemistry (in Chinese), 2004, 10(2): 159–167

    CAS  Google Scholar 

  28. Wang L, Yang Q, Yuan Z B. Electrochemical behavior of L-3,4-dihydroxyphenylalanine at the SWNT-modified electrode. Anal Lab (in Chinese), 2004, 23(6): 13–15

    Google Scholar 

  29. Zheng M, Rostovtsev V V. Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. J Am Chem Soc, 2006, 128(24): 7702–7703

    Article  CAS  Google Scholar 

  30. Zheng M, Diner B A. Solution redox chemistry of carbon nanotubes. J Am Chem Soc, 2004, 126(47): 15490–15494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengZhi Huang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20675065, 20425517) and the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. JYB20060635003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P., Huang, C. & Zhang, L. Multi-walled carbon nanotubes based catalyst plasmon resonance light scattering analysis of tetracycline hydrochloride. Sci. China Ser. B-Chem. 51, 866–871 (2008). https://doi.org/10.1007/s11426-008-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0090-8

Keywords

Navigation