Skip to main content
Log in

Aβ-binding molecules: Possible application as imaging probes and as anti-aggregation agents

  • Reviews
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

As amyloid β (Aβ) is at the centre of pathogenesis of Alzheimer’s disease (AD), Aβ aggregate-specific probes for in vivo studies of Aβ are potentially important for the early diagnosis and the assessment of new treatment strategies in the AD brain by noninvasive imaging. Several series of compounds derived from Congo red (CR) and Thioflavin T (ThT) have been evaluated as potential probes for the Aβ imaging. They include a diversity of core structures contributing to their affinities to Aβ. Small-molecule inhibitors were known to inhibit the formation of Aβ oligomers and fibrils. This inhibition has to be performed in such a way that these inhibitors bind to Aβ in the binding channel where Aβ-binding probes should sit. Therefore, several of them were used as novel core structures to develop Aβ probes, with their derivatives exhibiting good Aβ affinities. This approach will facilitate the design of a variety of candidates for Aβ probe molecules and anti-aggregation-therapeutic drugs. Moreover, the finding of Aβ probes with diverse core structures recognized by binding sites on Aβs will likely provide a promising perspective for the design of 99mTc-labeled probe-derived molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selkoe D J. The origins of Alzheimer disease: A is for amyloid. JAMA, 2000, 283: 1615–1617

    Article  CAS  Google Scholar 

  2. Kang J, Lemaire H G, Unterbeck A, Salbaum J M, Masters C L, Grzeschik K H, Multhaup G, Beyreuthe K, Muller-Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325: 733–736

    Article  CAS  Google Scholar 

  3. Harper J D, Lansbury P T Jr. Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem, 1997, 66: 385–407

    Article  CAS  Google Scholar 

  4. Yankner B A, Duffy L K, Kirschner D A. Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science, 1990, 250: 279–282

    Article  CAS  Google Scholar 

  5. Harkany T, Abraham I, Konya C, Nyakas C, Zarandi M, Penke B, Luiten P G. Mechanisms of beta-amyloid neurotoxicity: Perspectives of pharmacotherapy. Rev Neurosci, 2000, 11: 329–382

    CAS  Google Scholar 

  6. Walsh D M, Klyubin I, Fadeeva J V, Cullen W K, Anwyl R, Wolfe M S, Rowan M J, Selkoe D J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416: 535–539

    Article  CAS  Google Scholar 

  7. Gong Y S, Chang L, Viola K L, Lacor P N, Lambert M P, Finch C E, Krafft G A, Klein W L. Alzheimer’s disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA, 2003, 100:10417–10422

    Article  CAS  Google Scholar 

  8. Tabner B J, Turnbull S, El Agnaf O M, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from Aβ and R-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radical Biol Med, 2002, 32: 1076–1083

    Article  CAS  Google Scholar 

  9. Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 2004, 3: 205–214

    Article  CAS  Google Scholar 

  10. Kawahara M, Kuroda J. Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: Channel formation and disruption of calcium homeostasis. Brain Res Bull, 2000, 53: 389–397

    Article  CAS  Google Scholar 

  11. McGeer E G, McGeer P L. Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Design, 1999, 5: 821–836

    CAS  Google Scholar 

  12. Moore A H, O’Banion M K. Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Delivery Rev, 2002, 54: 1627–1656

    Article  CAS  Google Scholar 

  13. Barrow C J. Advances in the development of Abeta-related therapeutic strategies for Alzheimer’s disease. Drug News Perspect, 2002, 15:102–109

    Article  CAS  Google Scholar 

  14. Masters C L, Cappai R, Barnham K J, Villemagne V L. Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics. J Neurochem, 2006, 97: 1700–1725

    Article  CAS  Google Scholar 

  15. Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol, 2004, 3: 519–527

    Article  CAS  Google Scholar 

  16. Norfray J F, Provenzale J M. Alzheimer’s disease: Neuropathologic findings and recent advances in imaging. Am J Roentgenol, 2004, 182:3–13

    Google Scholar 

  17. Wang Y, Mathis C A, Huang G F, Holt D P, Debnath M L, Klunk W E. Synthesis and 11C-labelling of (E,E)-1-(30,40-dihydroxystyryl)-4-(30-methoxy-40-hydroxystyryl) benzene for PET imaging of amyloid depositsy. J Label Compd Radiopharm, 2002, 45: 647–664

    Article  CAS  Google Scholar 

  18. Klunk W E, Wang Y M, Huang G F, Debnath M L, Holt D P, Mathis C A. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci, 2001, 69:1471–1484

    Article  CAS  Google Scholar 

  19. Mathis C A, Wang Y, Klunk W E. Imaging β-amyloid plaques and neurofibrillary tangles in the aging human brain. Curr Pharm Design, 2004, 10: 1469–1492

    Article  CAS  Google Scholar 

  20. Styren S D, Hamilton R L, Styren G C, Klunk W E. X-34, a fluorescent derivative of congo red. A novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem, 2000, 48: 1223–1232

    CAS  Google Scholar 

  21. Kung H F, Lee C W, Zhuang Z P, Kung M P, Hou C, Plössl K. Novel stilbenes as probes for amyloid plaques. J Am Chem Soc, 2001, 123: 12740–12741

    Article  CAS  Google Scholar 

  22. Lee C W, Kung M P, Hou C, Kung H F. Dimethylamino-fluorenes: Ligands for detecting β-amyloid plaques in the brain. Nucl Med Biol, 2003, 30: 573–580

    Article  CAS  Google Scholar 

  23. Zhuang Z P, Kung M P, Hou C, Plössl K, Kung H F. Biphenyls labeled with technetium 99m for imaging β-amyloid plaques in the brain. Nucl Med Biol, 2005, 32: 171–184

    Article  CAS  Google Scholar 

  24. Zhuang Z P, Kung M P, Hou C, Skovronsky D M, Gur T L, Plössl K, Trojanowski J Q, Lee V M Y, Kung H F. Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates. J. Med Chem, 2001, 44: 1905–1914

    Article  CAS  Google Scholar 

  25. Zhuang Z P, Kung M P, Hou C, Plössl K, Skovronsky D, Gur T L, Trojanowski J Q, Lee V M Y, Kung H F. IBOX (2-(4′-dimethylaminophenyl)-6-iodobenzoxazole): A ligand for imaging amyloid plaques in the brain. Nucl Med Biol, 2001, 28: 887–894

    Article  CAS  Google Scholar 

  26. Kung M P, Hou C, Zhuang Z P, Zhang B, Skovronsky D, Trojanowski J Q, Lee V M Y, Kung H F. IMPY: An improved thioflavin-T derivative for in vivo labeling of β-amyloid plaques. Brain Res, 2002, 956:202–210

    Article  CAS  Google Scholar 

  27. Ono M, Kung M P, Hou C, Kung H F. Benzofuran derivatives as Aβ-aggregate-specific imaging agents for Alzheimer’s disease. Nucl Med Biol, 2002, 29: 633–642

    Article  CAS  Google Scholar 

  28. Agdeppa E D, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole G M, Small G W, Huang S C, Barrio J R. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci, 2001, 21:RC189 1–5

    Google Scholar 

  29. Chandra R, Kung M P, Kung H F. Design, synthesis, and structure-activity relationship of novel thiophene derivatives for β-amyloid plaque imaging. Bioorg Med Chem Lett, 2006, 16: 1350–1352

    Article  CAS  Google Scholar 

  30. Chandra R, Oya S, Kung M P, Hou C, Jin L W, Kung H F. New diphenylacetylenes as probes for positron emission tomographic imaging of amyloid plaques. J Med Chem, 2007, 50: 2415–2423

    Article  CAS  Google Scholar 

  31. Qu W, Kung M P, Hou C, Oya S, Kung H F. Quick assembly of 1,4-diphenyltriazoles as probes targeting β-amyloid aggregates in alzheimer’s disease. J Med Chem, 2007, 50: 3380–3387

    Article  CAS  Google Scholar 

  32. Lockhart A, Ye L, Judd D B, Merritt A T, Lowe P N, Morgenstern J L, Hong G, Gee A D, Brown J. Evidence for the presence of three distinct binding sites for the Thioflavin T class of Alzheimer’s disease PET imaging agents on β-amyloid peptide fibrils. J Biol Chem, 2005, 280: 7677–7684

    Article  CAS  Google Scholar 

  33. LeVine H. Multiple ligand binding sites on Aβ(1–40) fibrils. Amyloid, 2005, 12: 5–14

    Article  CAS  Google Scholar 

  34. Agdeppa E D, Kepe V, Liu J, Small G W, Huang S C, Petric A, Satyamurthy N, Barrio J R. 2-dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): Novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol Imaging Biol, 2003, 5: 404–417

    Article  Google Scholar 

  35. Krebs M R H, Bromley E H C, Donald A M. The binding of thioflavin-T to amyloid fibrils: Localization and implications. J Struct Biol, 2005, 149: 30–37

    Article  CAS  Google Scholar 

  36. Chen X J. QSAR and primary docking studies of trans-stilbene (TSB) series of imaging agents for β-amyloid plaques. J Mol Struc-Theochem, 2006, 763: 83–89

    Article  CAS  Google Scholar 

  37. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem, 2003, 87: 172–181

    Article  CAS  Google Scholar 

  38. Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res, 2004, 75: 742–750

    Article  CAS  Google Scholar 

  39. Yang F S, Lim G P, Begum A N. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem, 2005, 280: 5892–5901

    Article  CAS  Google Scholar 

  40. Ono M, Yoshida N, Ishibashi K, Haratake M, Arano Y, Mori H, Nakayama M. Radioiodinated flavones for in vivo imaging of β-amyloid plaques in the brain. J Med Chem, 2005, 48: 7253–7260

    Article  CAS  Google Scholar 

  41. Ono M, Maya Y, Haratake M, Ito K, Mori H, Nakayama M. Aurones serve as probes of β-amyloid plaques in Alzheimer’s disease. Biochem Bioph Res Co, 2007, 361: 116–121

    Article  CAS  Google Scholar 

  42. Ono M, Maya Y, Haratake M, Nakayama M. Synthesis and characterization of styrylchromone derivatives as β-amyloid imaging agents. Bioorg Med Chem, 2007, 15: 444–450

    Article  CAS  Google Scholar 

  43. Ono M, Hori M, Haratake M, Tomiyama T, Mori H, Nakayama M. Structure-activity relationship of chalcones and related derivatives as ligands for detecting of β-amyloid plaques in the brain. Bioorg Med Chem, 2007, 15: 6388–6396

    Article  CAS  Google Scholar 

  44. Ryu E K, Choe Y S, Lee K H, Choi Y, Kim B T. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for β-Amyloid plaque imaging. J Med Chem, 2006, 49: 6111–6119

    Article  CAS  Google Scholar 

  45. Lee I, Choe YS, Kim D H, Lee K H, Choi Y, Choi JY, Kim B T. Synthesis and evaluation of RS-0406 derivatives for beta-amyloid plaque and neurofibrillary tangle imaging. J Label Compd Radio Pharm, 2007, 50: S409

    Google Scholar 

  46. Gazit E. A possible role for π-stacking in the selfassembly of amyloid fibrils. FASEB J, 2002, 16: 77–83

    Article  CAS  Google Scholar 

  47. Makin O S, Atkins E, Sikorski P, Johansson J, Serpell L C. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA, 2005, 102: 315–320

    Article  CAS  Google Scholar 

  48. Tjernberg L, Callaway D, Tjernberg A, Hahne S, Lilliehook C, Terenius L, Thyberg J, Norstedt C. A molecular model of Alzheimer amyloid β-peptide fibril formation. J Biol Chem, 1999, 274: 12619–12625

    Article  CAS  Google Scholar 

  49. Mage P P. Molecular simulation of the primary and secondary structures of the Aβ(1–42) peptide of Alzheimer’s disease. Med Res Rev, 1998, 18: 403–430

    Article  Google Scholar 

  50. Thomas T, Nadackal G T, Thomas K. Aspirin and nonsteroidal anti-inflammatory drugs inhibit amyloid-β aggregation. Neuroreport, 2001, 12: 3263–3267

    Article  CAS  Google Scholar 

  51. Agdeppa E D, Kepe V, Petric A, Satyamurthy N, Liu J, Huang S C, Small G W, Cole G M, Barrio J R. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-{6-[(2-[18F] fluoroethyl) (methyl) amino]-2napthyl}ethylidene) malononitrile. Neurosci, 2003, 117: 723–730

    Article  CAS  Google Scholar 

  52. Hirohata M, Ono K, Naiki H, Yamada M. Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. Neuropharmacology, 2005, 49: 1088–1099

    Article  CAS  Google Scholar 

  53. Lee V M Y. Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol Aging, 2002, 23: 1039–1042

    Article  CAS  Google Scholar 

  54. Stains C I, Mondal K, Ghosh I. Molecules that target beta-amyloid. ChemMedChem, 2007, 2: 1674–1692

    Article  CAS  Google Scholar 

  55. Collier T L, Waterhouse R N, Kassiou M. Imaging sigma receptors:application in drug development. Curr Pharm Design, 2007, 13:51–72

    Article  CAS  Google Scholar 

  56. Johannsen B, Pietzsch H J. Development of technetium-99m-based CNS receptor ligands: have there been any advances? Eur J Nucl Med, 2002, 29: 263–275

    Article  Google Scholar 

  57. Zhuang Z P, Kung M P, Hou C, Ploessl K, Kung H F. Biphenyls labeled with technetium 99m for imaging β-amyloid plaques in the brain. Nucl Med Biol, 2005, 32: 171–184

    Article  CAS  Google Scholar 

  58. Serdons K, Verduyckt T, Cleynhens J, Terwinghe C, Mortelmans L, Bormans G, Verbruggen A. Synthesis and evaluation of a 99mTc-BAT-phenylbenzothiazole conjugate as a potential in vivo tracer for visualization of amyloid β. Bioorg Med Chem Lett, 2007, 17: 6086–6090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoLi Liu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20471011)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Liu, B. Aβ-binding molecules: Possible application as imaging probes and as anti-aggregation agents. Sci. China Ser. B-Chem. 51, 801–807 (2008). https://doi.org/10.1007/s11426-008-0075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0075-7

Keywords

Navigation