Skip to main content
Log in

Dielectric study on membrane adsorption and release: Relaxation mechanism and diffusion dynamics

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Dielectric monitoring of the adsorption or release process of salicylic acid (SA) by chitosan membrane shows that the dielectric spectra of the chitosan membrane/ SA solution systems change regularly in the adsorption or release process. By analyzing the regularity, a new mechanism for the relaxations is proposed. The concentration polarization layer (CPL) caused by SA adsorption or release is confirmed to be essential for the dielectric relaxations. The changes of the spectra with time are explained by account of the relationship between CPL properties and dielectric strength. Based on this relaxation mechanism, a theoretical method can be established to calculate dynamical parameters of inner structure of the adsorption or release systems from their dielectric spectra. Therefore, dielectric spectroscopy is demonstrated to be a promising method for estimating interfacial distribution of ionic substances and their binding to membrane in a non-invasive way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernkop-Schnürch A. Chitosan and its derivatives: Potential excipients for peroral peptide delivery systems. Int J Pharm 2000, 194: 1–13

    Article  Google Scholar 

  2. Bhattarai N, Ramay H R, Gunn J, Matsen F A, Zhang M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Contr Rel, 2005, 103: 609–624

    Article  CAS  Google Scholar 

  3. Chen X G, Zheng L, Wang Z, Lee C Y, Park H J. Molecular affinity and permeability of different molecular weight chitosan membranes. J Agr Food, 2002, 50(21): 5915–5918

    Article  CAS  Google Scholar 

  4. Mi F L, Sung H W, Shyu S S. Release of indomethacin from a novel chitosan microsphere prepared by a naturally occurring crosslinker: Examination of crosslinking and polycation-anionic drug interaction. J Appl Poly, 2001, 81: 1700–1711

    Article  CAS  Google Scholar 

  5. Calvo P, Remuñan-López C, Vila-Jato J L, Alonso M J. Chitosan and chitosan/ethylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res, 1997, 14: 1431–1436

    Article  CAS  Google Scholar 

  6. Gupta K C, Kumar M N V. pH dependent hydrolysis and drug release behavior of chitosan/poly(ethylene glycol) polymer network microspheres. J Mat S M M, 2001, 12: 753–759

    Article  CAS  Google Scholar 

  7. Zhao K S, Li Y H. Dielectric characterization of a nanofiltration membrane in electrolyte solutions: Its double-layer structure and ion permeation. J Phys Chem B, 2006, 110(6): 2755–2763

    Article  CAS  Google Scholar 

  8. Li Y H, Zhao K S. Dielectric analysis of nanofiltration membrane in electrolyte solutions: Influences of electrolyte concentration and species on membrane permeation. J Col I Sc, 2004, 276: 68–76

    Article  CAS  Google Scholar 

  9. Li Y H, Zhao K S, Song C. Salicylic acid adsorption and release on chitosan membrane: Real-time dielectric spectroscopy study. Acta Chim S (in Chinese), 2004, 62(16): 1495–1502

    CAS  Google Scholar 

  10. Benavente J, Vázquez M I. Effect of age and chemical treatments on characteristic parameters for active and porous sublayers of polymeric composite membranes. J Coll I Sc, 2004, 273: 547–555

    Article  CAS  Google Scholar 

  11. Srikhirin T, Schuele D E, Mann J A, Lando J B. Application of dielectric relaxation spectroscopy to ultrathin Langmuir-Blodgett films. Macromol, 2000, 33(7): 2584–2594

    Article  CAS  Google Scholar 

  12. Hianik T, Fajkus M, Tarus B, Frangopol P T, Markin V S, Landers D F. The electrostriction, surface potential and capacitance relaxation of bilayer lipid membranes induced by tetracaine. Bioelectrochem Bioenerg, 1998, 46: 1–5

    Article  CAS  Google Scholar 

  13. Asami K, Takahashi K, Shirahige K. Progression of cell cycle monitored by dielectric spectroscopy and flow-cytometric analysis of DNA content. Yeast, 2000, 16: 1359–1363

    Article  CAS  Google Scholar 

  14. Fournier J, Williams G, Duch C, Aldridge G A. Changes in molecular dynamics during bulk polymerization of an epoxide-amine system as studied by dielectric relaxation spectroscopy. Macromol, 1996, 29: 7097–7107

    Article  CAS  Google Scholar 

  15. Fitz B D, Mijovic J. In Situ monitoring of chemical reactions in and molecular dynamics of model compounds by dielectric relaxation spectroscopy. J Phys Chem B, 2000, 104: 12215–12223

    Article  CAS  Google Scholar 

  16. Pethrick R A, Hayward D. Real time dielectric relaxation studies of dynamic polymeric systems. Prog Polym Sci, 2002, 27: 1983–2017

    Article  CAS  Google Scholar 

  17. Zhao K S, Asaka K, Sekine K, Hanai T. Dielectric relaxations due to the interfacial polarization in bilamellar structure. Theory derivation in terms of electrostatic laws and the consideration by experiments. Bull Inst Chem Res, Kyoto Univ, 1989, 66: 540–553

    CAS  Google Scholar 

  18. Asami K. Dielectric analysis of mitochondria isolated from rat liver II. Intact mitochondria as simulated by a double-shell model. Biochim Biophys Acta, 1984, 778: 570–578

    Article  CAS  Google Scholar 

  19. Bordi F, Cametti C, Gili T. Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell-Wagner-Hanai efective medium theory formulations. J Non-Cryst, 2002, 305: 278–284

    Article  CAS  Google Scholar 

  20. Maxwell J C. Treatise on Electricity and Magnetism. Oxford: Clarendon Press; 1891

    Google Scholar 

  21. Wagner K W. Erklärung der dielektrishen Nachwirkungsvorgänge auf Grund Maxerllsher Vorstellungen. Arch Electrotechnik (Berl), 1914, 2: 371–387

    Google Scholar 

  22. Li Y H, Zhao K S, Hikida T. Dielectric spectroscopy and its analysis for the system of reverse osmosis membrane UTC-10 in aqueous solution. Acta Phys Chim Sin (in Chinese), 2003, 19(6): 523–527

    CAS  Google Scholar 

  23. Zhao K S, Asaka K, Asami K, Hanai T. Dielectric analysis of concentration polarization structure at anion-exchange membrane/solution interface under dc bias voltage application. J Coll I S, 1992, 153: 562–571

    Article  CAS  Google Scholar 

  24. Hanai T, Zhao K S, Asaka K, Asami K. Dielectric theory of concentration polarization. Relaxation of capacitance and conductance for electrolyte solutions with locally varying conductivity. J Memb Sci, 1991, 64: 153–161

    Article  CAS  Google Scholar 

  25. Zhao K S, Hanai T. D c bias effect on the dielectric behaviour of some disperse systems. Bull Inst Chem Res, Kyoto Univ, 1991, 69(4): 358–374

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KongShuang Zhao.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20673014) and Open Topic Research Foundation of Jiangsu Laboratory of Advanced Functional Materials (No. 06KFJJ009)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhao, K. & Han, Y. Dielectric study on membrane adsorption and release: Relaxation mechanism and diffusion dynamics. Sci. China Ser. B-Chem. 51, 813–822 (2008). https://doi.org/10.1007/s11426-008-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0037-0

Keywords

Navigation