Skip to main content
Log in

In-situ UV-Raman study on soot combustion over TiO2 or ZrO2-supported vanadium oxide catalysts

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vanadium oxide catalysts. The real time reaction status of soot combustion over these catalysts was detected by in-situ UV-Raman spectroscopy. The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature. However, no obvious phase transformation process is observed for ZrO2 support. The structures of supported vanadium oxides also depend on the V loading. The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4 (4 is the number of V atoms per 100 support metal ions). Interestingly, this loading ratio (V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports (TiO2 and ZrO2). The formation of surface oxygen complexes (SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion. The presence of NO in the reaction gas stream can promote the production of SOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giakoumelou I, Fountzoula C, Kordulis C, Boghosia S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. J Catal, 2006, 239(1): 1–12

    Article  CAS  Google Scholar 

  2. Wei D, Wang H, Feng X B, Chueh W, Ravikovitch P, Lyubovsky M, Li C, Takeguchi T, Haller G L. Synthesis and characterization of vanadium-substituted mesoporous molecular sieves. J Phys Chem B, 1999, 103(12): 2113–2121

    Article  CAS  Google Scholar 

  3. Reddy B M, Lakshmanan P, Loridant S, Yamada Y, Kobayashi T, Lopez-Cartes C, Rojas T C, Fernandez A. Structural characterization and oxidative dehydrogenation activity of V2O5/CexZr1−xO2/SiO2 catalysts. J Phys Chem B, 2006, 110(18): 9140–9147

    Article  CAS  Google Scholar 

  4. Zhao Z, Yamada Y, Ueda A, Sakurai H, Kobayashi T. The role of redox and acid-base properties of silica-supported vanadia catalysts in the selective oxidation of ethane. Catal Today, 2004, 93–95: 163–171

    Article  Google Scholar 

  5. Xiong G, Li C. UV Raman spectroscopy and its applications in catalysis. Chin J Light Scattering (in Chinese), 2000, 12: 71–76

    Google Scholar 

  6. Li C, Xiong G, Liu J, Ying P, Xin Q, Feng Z. Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy. J Phys Chem B, 2001, 105(15): 2993–2997

    Article  CAS  Google Scholar 

  7. Shi J, Chen J, Feng Z, Chen T, Lian Y, Wang X, Li C. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C, 2007, 111(2): 693–699

    Article  CAS  Google Scholar 

  8. Chen J, Feng Z, Ying P, Li C. ZnO cluster encapsulated inside micropores of zeolites studies by UV Raman and laser-induced luminescence spectroscopies. J Phys Chem B, 2004, 108(34): 12669–12676

    Article  CAS  Google Scholar 

  9. Yu J, Li M, Liu Z, Feng Z, Xin Q, Li C. Comparative study of the vanadium species in VAPO-5 and VAPSO-5 molecular sieves. J Phys Chem B, 2002, 106(35): 8937–8943

    Article  CAS  Google Scholar 

  10. Li C. Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal Rev, 2004, 46(3–4): 419–492

    Article  CAS  Google Scholar 

  11. Setiabudi A, Allaart N K, Makkee M, Moulijn J A. In situ visible microscopic study of molten Cs2SO4-V2O5-soot system: Physical interaction, oxidation rate, and data evaluation. Appl Catal B, 2005, 60(3–4): 233–243

    Article  CAS  Google Scholar 

  12. Zhao Z, Liu J, Xu C, Duan A, Kobayashi T, Wachs I E. Effects of alkali metal cations on the structures, physico-chemical properties and catalytic behaviors of silica-supported vanadium oxide catalysts for the selective oxidation of ethane and the complete oxidation of diesel soot. Topics in Catal, 2006, 38(4): 309–325

    Article  CAS  Google Scholar 

  13. Liu J, Zhao Z, Xu C, Duan A, Zhu L, Wang X. Diesel soot oxidation over vanadium oxide and K-promoted vanadium oxide catalysts. Appl Catal B, 2005, 61(1–2): 36–46

    Article  CAS  Google Scholar 

  14. Craenenbroeck J V, Andreeva D, Tabakova T, Werde K V, Mullens J, Verpoort F. Spectroscopic analysis of Au-V-based catalysts and their activity in the catalytic removal of diesel soot particulates. J Catal, 2002, 209(2): 515–527

    Article  Google Scholar 

  15. Liu J, Zhao Z, Xu C, Duan A, Wang L, Zhang S. Synthesis of nanopowder Ce-Zr-Pr oxide solid solutions and their catalytic performances for soot combustion. Catal Commun, 2007, 8(3): 220–224

    Article  CAS  Google Scholar 

  16. Yu J, Jiang Z, Zhu L, Hao Z, Xu Z. Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds. J Phys Chem B, 2006, 110(9): 4291–4300

    Article  CAS  Google Scholar 

  17. Zhu L, Wang X, Yu, J, Hao Z. Catalytic performance of K-Ce0.5Zr0.5O2 catalysts for soot combustion. Acta Phys-Chim Sin (in Chinese), 2005, 21(8): 840–845

    CAS  Google Scholar 

  18. Oi-Uchisawa J, Obuchi A, Wang S D, Nanba T, Ohi A. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Appl Catal B, 2003, 43(2): 117–129

    Article  CAS  Google Scholar 

  19. Oi-Uchisawa J, Obuchi A, Enomoto R, Xu J Y, Nanba T, Liu S T, Kushiyama S. Oxidation of carbon black over various Pt/MOx/SiC catalysts. Appl Catal B, 2001, 32(4): 257–268

    Article  CAS  Google Scholar 

  20. Liu J, Zhao Z, Xu C, Duan A, Meng T, Bao X. Simultaneous removal of NOx and diesel Soot particulates over nanometric La2−x KxCuO4 complex oxide catalysts. Catal Today, 2007, 119(1–4): 267–272

    Article  CAS  Google Scholar 

  21. Dai H, He H, Li P, Gaob L, Auc C. The relationship of structural defect-redox property-catalytic performance of perovskites and their related compounds for CO and NOx removal. Catal Today, 2004, 90(3–4): 231–244

    Article  CAS  Google Scholar 

  22. Shangguan W F, Teraoka Y, Kagawa S. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl Catal B, 1998, 16(2): 149–154

    Article  CAS  Google Scholar 

  23. Wang H, Zhao Z, Xu C, Liu J, Lv Z. The catalytic behavior of La-Mn-O nanoparticle perovskite-type oxide catalysts for the combustion of the soot particle from the diesel engine. Chin Sci Bull, 2005, 50(14): 1440–1444

    Article  CAS  Google Scholar 

  24. Wang H, Zhao Z, Xu C, Liu J. Nanometric La1−x KxMnO3 perovskite-type oxides—highly active catalysts for the combustion of diesel soot particle under loose contact conditions. Catal Lett, 2005, 102(3–4): 251–256

    Article  CAS  Google Scholar 

  25. Neeft J P A, Makkee M, Moulijn J A. Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Appl Catal B, 1996, 8(1): 57–78

    Article  CAS  Google Scholar 

  26. Gregory T W, Ted S O, Alexis T B. Laser Raman spectroscopy of supported vanadium oxide catalysts. J Phys Chem, 1990, 94(10): 4240–4246

    Article  Google Scholar 

  27. Zhang J, Li M, Feng Z, Chen J, Li C. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B, 2006, 110(2): 927–935

    Article  CAS  Google Scholar 

  28. Das N, Eckert H, Hu H, Wachs I E, Walzer J F, Feher F J. Bonding states of surface vanadium(V) oxide phases on silica: Structural characterization by vanadium-51 NMR and Raman spectroscopy. J Phys Chem, 1993, 97(31): 8240–8243

    Article  CAS  Google Scholar 

  29. Olthof B, Khodakov A, Bell A T, Iglesia E. Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2. J Phys Chem B, 2000, 104(7): 1516–1528

    Article  CAS  Google Scholar 

  30. Khodakov A, Yang J, Su S, Iglesia E, Bell A T. Structure and properties of vanadium oxide-zirconia catalysts for propane oxidative dehydrogenation. J Catal, 1998, 177(2): 343–351

    Article  CAS  Google Scholar 

  31. Li M, Feng Z, Xiong G, Ying P, Xin Q, Li C. Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J Phys Chem B, 2001, 105(34): 8107–8111

    Article  CAS  Google Scholar 

  32. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon, 2005, 43(8): 1731–1742

    Article  CAS  Google Scholar 

  33. Tuinstra F, Koenig J L. Raman spectrum of graphite. Chem Phys, 1970, 53(3): 1126–1130

    Article  CAS  Google Scholar 

  34. Wang Y, Alsmeyer D C, McCreery R L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem Mater, 1990, 2(5): 557–563

    Article  CAS  Google Scholar 

  35. Alvarez-Puebla R A, Garrido J J, Aroca R F. Surface-enhanced vibrational microspectroscopy of fulvic acid micelles. Anal Chem, 2004, 76(23): 7118–7125

    Article  CAS  Google Scholar 

  36. Amariei D, Coutheoux L, Rossigno S, Kappenstein C. Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor: comparison of powder and sphere-shaped catalysts. Chem Engineer Process, 2007, 46(2): 165–174

    Article  CAS  Google Scholar 

  37. Minogue N, Riordan E, Sodeau J R. Raman Spectroscopy as a probe of low-temperature ionic speciation in nitric and sulfuric acid stratospheric mimic systems. J Phys Chem A, 2003, 107(22): 4436–4444

    Article  CAS  Google Scholar 

  38. Prinetto F, Ghiotti G, Occhiuzzi M, Indovina V. Characterization of oxidized surface phases on VOx/ZrO2 catalysts. J Phys Chem B, 1998, 102(50): 10316–10325

    Article  CAS  Google Scholar 

  39. Chen P, Huang F, Yun S. Optical characterization of nanocarbon phases in detonation soot and shocked graphite. Diamond & Related Mater, 2006, 15(9): 1400–1404

    Article  CAS  Google Scholar 

  40. Kim U J, Furtado C A, Liu X, Chen G, Eklund P C. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc, 2005, 127(44): 15437–15445

    Article  CAS  Google Scholar 

  41. Mul G, Kapteijn F, Moulijn J A. Catalytic oxidation of model soot by metal chlorides. Appl Catal B, 1997, 12(1): 33–47

    Article  CAS  Google Scholar 

  42. Stanmore B R, Brilhac J F, Gilot P. The oxidation of soot: a review of experiments, mechanisms and models. Carbon, 2001, 39(15): 2247–2268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhao or JinSen Gao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20473053, 20773163 and 20525621), the Beijing Natural Science Foundation (Grant No. 2062020), and the 863 Program of China (Grant No. 2006AA06Z346)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhao, Z., Xu, C. et al. In-situ UV-Raman study on soot combustion over TiO2 or ZrO2-supported vanadium oxide catalysts. Sci. China Ser. B-Chem. 51, 551–561 (2008). https://doi.org/10.1007/s11426-008-0027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0027-2

Keywords

Navigation