Skip to main content
Log in

Preparation of sodium titanate nanotubes modified by CdSe quantum dots and their photovoltaic characteristics

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Sodium titanate nanotubes have been prepared and modified chemically with CdSe quantum dots (QDs) using bifunctional modifiers (HS-COOH). Their photovoltaic characteristics have also been studied. The results indicate that the surface photovoltage response of nanotubes extends to the visible light region, and the intensity of surface photovoltage is enhanced after modification with CdSe QDs. The field-induced surface photovoltage spectroscopy (FISPS) shows that sodium titanate nanotubes have different photovoltaic response before and after modification. That is, the surface photovoltaic response of pure sodium titanate nanotubes increases with the enhancement of positive applied bias and decreases with the enhancement of negative applied bias. Meanwhile, the surface photovoltaic response of CdSe modified sodium titanate nanotubes is different from that of the pure sodium titanate nanotubes. The whole spectrum increases with the enhancement of applied bias at the first stage. However, when the applied bias reaches a certain value, the surface photovoltage response keeps increasing in some spectrum regions, while decreasing in other spectrum regions. This novel phenomenon is explained by using an electric field induced dipole model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6(2): 215–218

    Article  CAS  Google Scholar 

  2. Wang Xiaodong, Yang Janjun, Yin Haoyong, Zhang Zhijun, Jin Zhensheng. Study of photocatalytic degradation of propylene on nanotube TiO2 (in Chinese). Photographic Sci Photochem, 2002, 20(6): 424–428

    CAS  Google Scholar 

  3. Sato Y, Koizumi M, Miyao T, Naito S. The CO-H2 and CO-H2O reactions over TiO2 nanotubes filled with Pt metal nanoparticles. Catal Today, 2006, 111: 164–170

    Article  CAS  Google Scholar 

  4. Sasaki K, Asanuma K, Johkura K, Kasuga T, Okouchi Y, Ogiwara N, Kubota S, Teng R, Cui L, Zhao X. Ultrastructural analysis of TiO2 nanotubes with photodecomposition of water into O2 and H2 implanted in the nude mouse. Ann Anat, 2006, 188: 137–142

    Article  CAS  Google Scholar 

  5. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir, 1998, 14: 3160–3163

    Article  CAS  Google Scholar 

  6. Zhang J W, Guo X Y, Jin Z S, Zhang S L, Zhou J F, Zhang Z J. TEM study on the formation process of TiO2 nanotubes. Chin Chem Lett, 2003, 14(4): 419–422

    CAS  Google Scholar 

  7. Wang W, Varghese O K, Paulose M, Grimes C A. A study on the growth and structure of titania nanotubes. J Mater Res, 2004, 19(2): 417–422

    Article  Google Scholar 

  8. Du G H, Chen Q, Che R C, Peng L M. Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett, 2001, 79(22): 3702–3704

    Article  CAS  Google Scholar 

  9. Yang J J, Jin Z S, Wang X D, Li W, Zhang J W, Zhang S L, Guo X Y, Zhang Z J. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans, 2003, 3898–3901

  10. Zhang Q H, Gao L, Sun J, Zheng S. Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem Lett, 2002, 226–227

  11. Zhong Y Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires. Coll Surf A: Physicochem Eng Aspects, 2004, 241: 173–183

    Article  CAS  Google Scholar 

  12. Zhu Y, Li H, Koltypin Y, Hacohen Y R, Gedanken A. Sonochemical synthesis of titania whiskers and nanotubes. Chem Commun, 2001, 2616–2617

  13. Seo D S, Lee J K, Kim H. Preparation of nanotube-shaped TiO2 powder. J Cryst Growth, 2001, 229: 428–432

    Article  CAS  Google Scholar 

  14. Varghese O K, Gong D, Paulose M, Crimes C A, Dickey E. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res, 2003, 18(1): 156–165

    Article  CAS  Google Scholar 

  15. Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A, Walsh F. Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence. J Phys Chem B, 2005, 109: 8565–8569

    Article  CAS  Google Scholar 

  16. Zhang C M, Jiang X H, Tian B L, Wang X J, Zhang X T, Du Z L. Modification and assembly of sodium titanate nanotubes. Coll Surf A: Physicochem Eng Aspects, 2005, 257–258: 521–524

    Article  CAS  Google Scholar 

  17. Zhang M, Jin Z S, Zhang J W, Guo X Y, Li W, Wang X D, Zhang Z J. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mole Catal A: Chem, 2004, 217: 203–210

    Article  CAS  Google Scholar 

  18. Tokudome H, Miyauchi M. Electrochromism of titanate-based nanotubes. Angew Chem Int Ed, 2005, 44: 1974–1977

    Article  CAS  Google Scholar 

  19. Lim S H, Luo J, Zhong Z, Ji W, Lin J. Room-Temperature hydrogen uptake by TiO2 nanotubes. Inor Chem, 2005, 44: 4124–4126

    Article  CAS  Google Scholar 

  20. Hong J, Cao J, Sun J Z, Li H, Chen H, Wang M. Electronic structure of titanium oxide nanotubules. Chem Phys Lett, 2003, 380: 366–371

    Article  CAS  Google Scholar 

  21. Zhang Shunli, Zhou Jingfang, Zhang Zhijun, Du Zuliang, Vorontsov A V, Jin Zhensheng. Structure and physical and chemical characteristics of TiO2 nanotubes (in Chinese). Chin Sci Bull, 2000, 45(10): 1104–1108

    Google Scholar 

  22. Zhang S L, Li W, Jin Z S, Yang J J, Zhang J W, Du Z L, Zhang Z J. Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid. J Solid State Chem, 2004, 177: 1365–1371

    Article  CAS  Google Scholar 

  23. Qian L, Jin Z S, Zhang J W, Huang Y B, Zhang Z J, Du Z L. Study of the visible-excitation luminescence of NTA-TiO2(AB) with single-electron-trapped oxygen vacancies. Appl Phys A, 2004, 80: 1801–1805

    Article  CAS  Google Scholar 

  24. Grätzel M. Dye-sensitized solar cells. J Photochem Photobio C: Photochem Rev, 2003, 4: 145–153

    Article  CAS  Google Scholar 

  25. Adachi M, Murata Y, Okada I, Yoshikawa S. Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc, 2003, 150(8): G488–G493

    Article  CAS  Google Scholar 

  26. Chen S, Paulose M, Ruan C, Mor G K, Varghese O K, Kouzoudis D, Grimes C A. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobio A: Chem, 2006, 177: 177–184

    Article  CAS  Google Scholar 

  27. Robel I, Subramanian V, Kuno M, Kamat P. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Am Chem Soci, 2006, 128: 2385–2484

    Article  CAS  Google Scholar 

  28. Fang J H, Lu X M, Zhang X F, Fu D G, Lu Z H. CdSe/TiO2 nanocrystalline solar cells. Supramole Sci, 1998, 5(5–6): 709–711

    Article  CAS  Google Scholar 

  29. Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G. Chemical bath deposite CdS/CdSe-sensitized porous TiO2 solar cells. J Photochem Photobio A: Chem, 2006, 181: 306–313

    Article  CAS  Google Scholar 

  30. Underwood D F, Kippeny T, Rosenthal S J. Charge carrier dynamics in CdSe nanocrystals: Implications for the use of quantum dots in novel photovoltaics. Euro Phys J D, 2001, 16: 241–244

    Article  CAS  Google Scholar 

  31. Nozik J A. Quantum dot solar cells. Phys E, 2002, 14: 115–120

    Article  CAS  Google Scholar 

  32. Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 2004, 92(18): 186601-1–186601-4

    Article  CAS  Google Scholar 

  33. Peng A Z, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc, 2001, 123: 183–184

    Article  CAS  Google Scholar 

  34. Zhang Xingtang, Wang Yumei, Zhang Chunmei, Jiang Xiaohong, Tian Baoli, Li Yuncai, Huang Yabin, Du Zuliang. Chemical modification and photoluminescence stabilization of titanic acid nanotubes. Sci Chin Ser B-Chem, 2006, 49(2): 155–161

    Article  CAS  Google Scholar 

  35. Sharma S N, Pillai Z S, Kamat P V. Photoinduced Charge Transfer between CdSe Quantum Dots and p-Phenylenediamine. J Phys Chem B, 2003, 107: 10088–10093

    Article  CAS  Google Scholar 

  36. Landes C, Burda C, Braun M, El-Sayed M A. Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-Butylamine. J Phys Chem B, 2001, 105: 2981–2986

    Article  CAS  Google Scholar 

  37. Cassagneau T, Mallouk T E, Fendler J H. Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc, 1998, 120: 7848–7859

    Article  CAS  Google Scholar 

  38. Qian L, Jin Z S, Yang S Y, Du Z L, Xu X R. Bright visible photoluminescence from nanotube titania grown by soft chemical process. Chem Mater, 2005, 17: 5334–5338

    Article  CAS  Google Scholar 

  39. Song Huihua, Fang Zhen, Guo Haiqing. Synthesis and characterization of CdSe/poly (4-vinylpyridine) quaternary ammonium nanocomposite (in Chinese). Acta Phys-Chim Sin, 2003, 19(1): 9–12

    CAS  Google Scholar 

  40. Xie Yin, Xu Jingjuan, Yu Junsheng, Che Hongyuan. Synthesis and characterization of water-soluble CdSe/ZnS core-shell nanoparticles (in Chinese). Chin J Inor Chem, 2004, 20(6): 663–668

    CAS  Google Scholar 

  41. Li Z H, Wang D J, Wang P, Lin Y H, Zhang Q L, Yang M. Study of mechanism of photogenerated charge transfer in nano-TiO2. Chem Phys Lett, 2005, 411: 511–515

    Article  CAS  Google Scholar 

  42. Qian X M, Qin D Q, Bai Y B, Li T J, Tang X Y, Wang E, Dong S J. Photosensitization of TiO2 nanoparticulate thin film electrodes by CdS nanoparticals. J Solid State Electrochem, 2001, 5: 562–567

    Article  CAS  Google Scholar 

  43. Zhang J, Wang D J, Shi T S, Wang B H, Sun J Z, Li T J. Photovoltaic properties of porphyrin solid film with electric-field induction. Thin Solid Films, 1996, 284–285: 596–599

    Article  Google Scholar 

  44. Weinstein F C, Dow J D, Lao B Y. Optical response of semiconductors in electric field: excitonic effects. Phys Rev B, 1971, 4(10): 3502–3517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZuLiang Du.

Additional information

Supported by the Program for New Century Excellent Talents in University (Grant No. NCET-04-0653), 973 Plan (Grant No. 2007CB616911) and the National Natural Science Foundation of China (Grant Nos. 20371015 and 90306010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Cheng, K., Ji, Y. et al. Preparation of sodium titanate nanotubes modified by CdSe quantum dots and their photovoltaic characteristics. Sci. China Ser. B-Chem. 51, 976–982 (2008). https://doi.org/10.1007/s11426-008-0023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0023-6

Keywords

Navigation