Skip to main content
Log in

Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs

Primary theoretical studies on HEDM formulation design

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Five polymer bonded explosives (PBXs) with the base explosive ε-CL-20 (hexanitrohexaazaisowurtzitane), the most important high energy density compound (HEDC), and five polymer binders (Estane 5703, GAP, HTPB, PEG, and F2314) were constructed. Molecular dynamics (MD) method was employed to investigate their binding energies (E bind), compatibility, safety, mechanical properties, and energetic properties. The information and rules were reported for choosing better binders and guiding formulation design of high energy density material (HEDM). According to the calculated binding energies, the ordering of compatibility and stability of the five PBXs was predicted as ε-CL-20/PEG > ε-CL-20/Estane5703 ≈ ε-CL-20/GAP > ε-CL-20/HTPB > ε-CL-20/F2314. By pair correlation function g(r) analyses, hydrogen bonds and vdw are found to be the main interactions between the two components. The elasticity and isotropy of PBXs based ε-CL-20 can be obviously improved more than pure ε-CL-20 crystal. It is not by changing the molecular structures of ε-CL-20 for each binder to affect the sensitivity. The safety and energetic properties of these PBXs are mainly influenced by the thermal capability (C°p) and density (ρ) of binders, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert P S, Jack A. Research towards novel energetic materials. J Energ Mater, 1986, 45: 5–28

    Google Scholar 

  2. Agrawal P J. Recent trends in high-energy materials. Prog Energy Combust Sci, 1998, 24: 1–30

    Article  CAS  Google Scholar 

  3. Zhang M X, Eaton P E, Gilardi R. Hepta-and octanitrocubanes. Angew Chem Int Ed, 2000, 39(2): 401–404

    Article  CAS  Google Scholar 

  4. Nedelko V V, Chukanov N V, Raevskii A V, Korsounskii B L, Larikova T S, Kolesova O I. Comparative investigation of thermal decomposition of various modification of hexanitrohexaazaisowurtzitane (CL-20). Propell Explos Pyrotech, 2000, 25: 255–259

    Article  CAS  Google Scholar 

  5. Dong H S. The development and countermeasure of high energy density materials. Chin J Energ Mater, 2004, 12(Suppl): 1–12

    CAS  Google Scholar 

  6. Nielsen A T, Nissan P A. Polynitropolyaza caged explosives. Part 5, Naval Weapon Center Technical Publication, 1986, 6692

  7. Simpson R L, Urtuew P A, Omellas D. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell Explos Pyrotech, 1997, 22: 249–255

    Article  CAS  Google Scholar 

  8. Bircher H R, Mäder P, Mathieu J. Properties of CL-20 based high explosives. 29th Int Annu Conf ICT. Karlsruhe, Germany, 1998, 94: 1–14

    Google Scholar 

  9. Bouma R H B, Duvalois W. Characterization of commercial grade CL-20. 31th Int. Annu Conf ICT. Karlsruhe, Germany, 2000, 105: 1–9

    Google Scholar 

  10. Xu X J, Xiao J J, Zhu W, Xiao H M, Huang H, Li J S. Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B, 2006, 110: 7203–7207

    Article  CAS  Google Scholar 

  11. Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim Th. Decomposition of HMX at extreme conditions: A molecular dynamics simulation. J Phys Chem A, 2002, 106: 9024–9029

    Article  CAS  Google Scholar 

  12. Sewell T D, Menikoff R, Bedrov D, Smith G S. A molecular dynamics simulation study of elastic properties of HMX. J Chem Phys, 2003, 119: 7417–7426

    Article  CAS  Google Scholar 

  13. Qiu L, Xiao H M, Zhu W H, Xiao J J, Zhu W. Ab initio and molecular dynamics study of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin). J Phys Chem B, 2006, 110: 10651–10661

    Article  CAS  Google Scholar 

  14. Gee R H, Roszak S, Balasubramanian K, Fried L E. Ab initio based force field and molecular dynamics simulations of crystalline TATB. J Chem Phys, 2004, 120: 7059–7066

    Article  CAS  Google Scholar 

  15. Bunte S W, Sun H. Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the Compass force field. J Phys Chem B, 2000, 104: 2477–2489

    Article  CAS  Google Scholar 

  16. Yang X Z. Molecular Simulation and Polymer Materials (in Chinese). Beijing: Science Press, 2002

    Google Scholar 

  17. Xiao J J, Fang G Y, Ji G F, Xiao H M. Simulation investigation in the binding energy and mechanical properties of HMX-based plastic-bonded explosives (PBXs). Chin Sci Bull, 2005, 50(1): 21–26

    Article  CAS  Google Scholar 

  18. Xiao J J, Huang Y C, Hu Y J, Xiao, H. M. Molecular dynamics simulation of mechanical properties of TATB/Flourine-polymer PBXs along different surfaces. Sci China Ser B-Chem, 2005, 48: 504–510

    Article  CAS  Google Scholar 

  19. Ma X F, Xiao J J, Huang H, Ju X H, Li J S, Xiao H M. Simulative calculation on mechanical property, binding energy and detonation property of TATB/fluorine-polymer PBX. Chin J Chem, 2006, 24: 473–477

    Article  CAS  Google Scholar 

  20. Sun H, Rigby D. Polysiloxanes: Ab initio force and structural, conformational and thermophysical properties. Spectrochimica Acta A, 1997, 153: 1301–1323

    Article  Google Scholar 

  21. Sun H, Ren P, Fried J R. The Compass force field: Parameterization and validation for phosphazenes. Comput Theor Polym Sci, 1998, 8: 229–246

    Article  CAS  Google Scholar 

  22. Sun H. Compass: An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds. J Phys Chem B, 1998, 102: 7338–7364

    Article  CAS  Google Scholar 

  23. Xu X J, Zhu W H, Xiao H M. Theoretical predictions on the structures and properties for Po lynitrohexaazaadamantanes (PNHAAs) in crystals as potential high energy density compounds (HEDCs). Theochem, 2007, (submitted)

  24. Materials Studio 3.0, Accelys: San Diego, Ca. 2004

  25. Zhao X Q, Shi N Ch. Crystal structure of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull, 1995, 40: 2158–2160

    Google Scholar 

  26. Hui J M, Chen T Y. Explosion Theory of Explosives. Nanjing: Jiangsu Science and Technology Press, 1995. 64–65

    Google Scholar 

  27. Ou Y X, Liu J Q. High Energy Density Compounds. Beijing: National Defence and Industry Press, 2005

    Google Scholar 

  28. Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J Phys Chem A, 2006, 110(17): 5929–5933

    Article  CAS  Google Scholar 

  29. Xu X J, Xiao H M, Ju X H, Gong X D, Chen Z X. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanisms for polynitroadamantanes. J Phys Chem A, 2005, 109(49): 11268–11274

    Article  CAS  Google Scholar 

  30. Xu X J, Zhu W H, Xiao H M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J Phys Chem B, 2007, 118(8): 2090–2097

    Article  Google Scholar 

  31. Ma X F, Zhao F, Xiao J J, Ji G F. Zhu W, Xiao H M. Simulation studies on the molecular structures and properties on HMX-based PBX of many components. Explosion and Shock Wave, 2007, 27(2): 109–115

    Google Scholar 

  32. Swenson R J. Comments-on-viral-theorems-for-bounded-systems. Am J Phys, 1983, 51: 940–942

    Article  CAS  Google Scholar 

  33. Watt J P, Davies G F, O’Connell R J. The elastic properties of composite materials. Rev Geophys Space Phys, 1976, 14: 541–563

    CAS  Google Scholar 

  34. Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of CHNO explosives. J Chem Phys, 1968, 48: 23–35

    Article  CAS  Google Scholar 

  35. Wu X. Simple method for calculating detonation parameters of explosives. J Energ Mater, 1985, 3(4): 263–277

    Article  CAS  Google Scholar 

  36. Zhang X H, Yun L H. Chemistry of Explosives. Beijing: National Defence and Industry Press, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao HeMing.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10176012), the Important Foundation of China Academy of Engineering Physics (CAEP, 2004Z0503) and 973 Program of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Xiao, J., Huang, H. et al. Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs. Sci. China Ser. B-Chem. 50, 737–745 (2007). https://doi.org/10.1007/s11426-007-0141-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0141-6

Keywords

Navigation