Skip to main content
Log in

Ab initio investigation on the structures and spectra of the firefly luciferin

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The ground state (S0) geometry of the firefly luciferin (LH2) was optimized by both DFT B3LYP and CASSCF methods. The vertical excitation energies (T v) of three low-lying states (S1, S2, and S3) were calculated by TD-DFT B3LYP//CASSCF method. The S1 geometry was optimized by CASSCF method. Its T v and the transition energy (T e) were calculated by MS-CASPT2//CASSCF method. Both the TD-DFT and MS-CASPT2 calculated S1 state T v values agree with the experimental one. The IPEA shift greatly affects the MS-CASPT2 calculated T v values. Some important excited states of LH2 and oxyluciferin (oxyLH2) are charge-transfer states and have more than one dominant configuration, so for deeply researching the firefly bioluminescence, the multireference calculations are desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson T. Comments on the mechanism of chemi-and bioluminescence. Photochem Photobiol, 1995, 62: 601–606

    CAS  Google Scholar 

  2. Hastings J W. Bioluminescence, In: Sperelakis N, ed. Cell Physiology Source Book. New York: Academic Press, 1995. 665–681

    Google Scholar 

  3. Wood K V. Chemical mechanism and evolutionary development of beetle bioluminescence. Photochem Photobiol, 1995, 62: 662–673

    CAS  Google Scholar 

  4. Hastings J W. Chemistries and colors of bioluminescent reactions-a review. Gene, 1996, 173: 5–11

    Article  CAS  Google Scholar 

  5. Subramani S, deLuca M. Applications of the firefly luciferase as a reporter gene. In: Setlow J, Hollaender A, eds. Genetic Engineering—Principles and Practice Vol 10. New York: Plenum Press, 1988. 75–89

    Google Scholar 

  6. White E H, Rapaport E, Seliger H H, Hopkins T A. The chemi-and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg Chem, 1971, 1: 92–122

    Article  CAS  Google Scholar 

  7. Branchini B R, Murtiashaw M H, Magyar R A, Portier N C, Ruggiero M C, Stroh J G. Yellow-green and red firefly bioluminescence from 5,5-dimethyloxyluciferin. J Am Chem Soc, 2002, 124: 2112–2113

    Article  CAS  Google Scholar 

  8. Ugarova N N, Brovko L Y. Protein structure and bioluminescent spectra for firefly. Bioluminescence Luminescence, 2002, 17: 321–330

    Article  CAS  Google Scholar 

  9. McCapra F, Gilfoyle D J, Young D W, Church N J, Spencer P. The chemical origin of colour differences in beetle bioluminescence. In: Campbell A K, Kricka L J, Stanley P E, eds. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects. New York: John Wiley & Sons, 1994. 387–391

    Google Scholar 

  10. Brovko L Y, Gandelman O A, Savich W I. Fluorescent and quantum-chemical evaluation of emitter structure in firefly bioluminescence. In: Campbell A K, Kricka L J, Stanley P E, eds. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects. Chichester: Wiley, 1994. 525–527

    Google Scholar 

  11. Orlova G, Goddard J D, Brovko L Y. A theoretical study of amazing firefly bioluminescence: The structure of the light emitters. J Am Chem Soc, 2003, 25: 6962–6971

    Article  Google Scholar 

  12. DeLuca M. Hydrophobic nature of the active site of firefly luciferase. Biochemistry, 1969, 8: 160–166

    Article  CAS  Google Scholar 

  13. Ugarova N N, Brovko L Y. Relationship between the structure of the protein globule and bioluminescence spectra of firefly luciferase. Russian Chem Bull, 2001, 50: 1752–1761

    Article  CAS  Google Scholar 

  14. Gandelman O A, Brovko L Y, Ugarova N N, Chikishev A Y, Shkurimov A P. Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin luciferase system. J Photochem Photobiol B: Biol, 1993, 19: 187–191

    Article  CAS  Google Scholar 

  15. McElroy W D, Seliger H H. The colors of bioluminescence: Role of enzyme and substrate structure. In: Hayashi H, Szent-Gyorgyi I, eds. Molecular Architecture in Cell Physiology. Englewood Cliffs: Prentice Hall, 1966. 63–80

    Google Scholar 

  16. Branchini B R, Southworth T L, Murtiashaw M H, Magyar R A, Gonzalez S A, Ruggiero M C, Stroh J G. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry, 2004, 43: 7255–7262

    Article  CAS  Google Scholar 

  17. Wada N, Honda M, Yoshihara T, Suzuki H. Theory of d-luciferin in ethanol. J Phys Soc Jpn, 1980, 49: 1519–1523

    Article  CAS  Google Scholar 

  18. Nakatsu T, Ichiyamal S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H. Structural basis for the spectral difference in luciferase bioluminescence. Nature, 2006, 440: 372–376

    Article  CAS  Google Scholar 

  19. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133–A1138

    Article  Google Scholar 

  20. Becke A D. Density-functional thermochemistry III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  22. Casida M E, Jamorski C, Casida K C, Salahub D R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys, 1998, 108: 4439–4449

    Article  CAS  Google Scholar 

  23. Rassolov V A, Ratner M A, Pople J A, Redfern P C, Curtiss L A. 6-31G* basis set for third-row atoms. J Comp Chem, 2001, 22: 976–984

    Article  CAS  Google Scholar 

  24. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Jr., Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998

    Google Scholar 

  25. Roos B O, Taylor P R, Siegban P E M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys, 1980, 48: 157–173

    Article  CAS  Google Scholar 

  26. Roos B O, Andersson K, Fulscher M P, Malmqvist P A, Serrano-Andres L, Pierloot K, Merchan M. Multiconfigurational perturbation theory: Applications in electronic spectroscopy. In: Prigogine I, Rice S A, eds. Advances in Chemical Physics: New Methods in Computational Quantum Mechanics. New York: John Wiley & Sons, 1996, XCIII: 219–331

    Google Scholar 

  27. Roos B O, Lindh R, Malmqvist P Å, Veryazov V, Widmark P O. Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A, 2004, 108: 2851–2858

    Article  CAS  Google Scholar 

  28. Jansen G, Hess B A. Revision of the Douglas-Kroll transformation. Phys Rev A, 1989, 39: 6016–6017

    Article  Google Scholar 

  29. Karlström G, Lindh R, Malmqvist P Å, Roos B O, Ryde U, Veryazov V, Widmark P O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L. Molcas: A program package for computational chemistry. Computational Material Science, 2003, 28: 222–239

    Article  Google Scholar 

  30. Dennis D, Stanford R H Jr. The crystal and molecular structure of firefly D(-)-luciferin. Acta Cryst, 1973, B29: 1053–1058

    Google Scholar 

  31. Kobayashi R, Amos R D. The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin com. Chem Phys Lett, 2006, 420: 106–109

    Article  CAS  Google Scholar 

  32. Tozer D J, Amos R D, Handy N C, Roos B O, Serrano-Andrés L. Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys, 1999, 97: 859–868

    Article  CAS  Google Scholar 

  33. Ghigo G, Roos B O, Malmqvist P Å. A modified definition of the zeroth order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett, 2004, 396: 142–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu YaJun.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20673012) and the Major State Basic Research Development Programs (Grant No. 2004CB719903)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Fang, W. Ab initio investigation on the structures and spectra of the firefly luciferin. Sci. China Ser. B-Chem. 50, 725–730 (2007). https://doi.org/10.1007/s11426-007-0127-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0127-4

Key words

Navigation