Skip to main content
Log in

Study on multimers and their structures in molecular association mixture

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Self-association system of (R)-1,3-butanediol in dilute carbon tetrachloride (CCl4) solution is studied as a model of molecular association mixture. Analysis methods including FSMWEFA (fixed-size moving window evolving factor analysis) combined with PCA (principal component analysis), SIMPLISMA (simple-to-use interactive self-modeling mixture analysis), and ITTFA (iterative target transformation factor analysis) are adopted to resolve infrared spectra of (R)-1,3-butanediol solution. Association number and equilibrium constant are computed. (R)-1,3-butanediol in dilute inert solution is determined as a monomer-trimer equilibrium system. Theoretical investigation of trimer structures is carried out with DFT (density functional theory), and structural factors are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latimer W M, Rodebush W H. Polarity and ionization from the standpoint of the lewis theory of valence. J Am Chem Soc, 1920, 42(7): 1419–1433

    Article  CAS  Google Scholar 

  2. Choppin G R. Studies of the hydrogen bonded structures of water and methanol. J Mol Struct, 1978, 45: 39–54

    Article  CAS  Google Scholar 

  3. Coker D F, Miller R E, Watts R O. The infrared predissociation spectra of water clusters. J Chem Phys, 1985, 82(8): 3554–3562

    Article  Google Scholar 

  4. Xantheas S S, Dunning T H Jr. The structure of the water trimer from ab initio calculations. J Chem Phys, 1993, 98(10): 8037–8040

    Article  CAS  Google Scholar 

  5. Xantheas S S, Dunning T H Jr. Ab initio studies of cyclic water clusters (H2O)n, n=1–6 (I): Optimal structures and vibrational spectra. J Chem Phys, 1993, 99(11): 8774–8792

    Article  CAS  Google Scholar 

  6. Fletcher A N. Self-association of methanol vapor. Evidence for dimers and tetramers. J Phys Chem-US, 1971, 75(12): 1808–1814

    Article  CAS  Google Scholar 

  7. Curtiss L A. Molecular orbital studies of methanol polymers using a minimal basis set. J Chem Phys-US, 1977, 67(3): 1144–1149

    Article  CAS  Google Scholar 

  8. Dixon J R, George W O, Hossain M F, et al. Hydrogen-bonded forms of methanol. IR spectra and ab initio calculations. J Chem Soc Faraday T, 1997, 93(20): 3611–3618

    Article  CAS  Google Scholar 

  9. Ehbrecht M, Huisken F. Vibrational spectroscopy of ethanol molecules and complexes selectively prepared in the gas phase and adsorbed on large argon clusters. J Phys Chem A, 1997, 101(42): 7768–7777

    Article  CAS  Google Scholar 

  10. González L, Mó O, Yúňez M. Density functional theory study on ethanol dimers and cyclic ethanol trimers. J Chem Phys, 1999, 111(9): 3855–3861

    Article  Google Scholar 

  11. Murdoch K M, Ferris T D, Wright J C, et al. Infrared spectroscopy of ethanol clusters in ethanol-hexane binary solutions. J Chem Phys, 2002, 116(13): 5717–5724

    Article  CAS  Google Scholar 

  12. Czarnecki M A, Maeda H, Ozaki Y, et al. Resolution enhancement and band assignments for the first overtone of OH stretching modes of butanols by two-dimensional near-infrared correlation spectroscopy. 2. Thermal dynamics of hydrogen bonding in n-and tert-butyl alcohol in the pure liquid states. J Phys Chem A, 1998, 102(46): 9117–9123

    Article  CAS  Google Scholar 

  13. Iwahashi M, Suzuki M, Katayama N, et al. Molecular self-assembling of butan-1-ol, butan-2-ol and 2-methylpropan-2-ol in carbon tetrachloride solution as observed by near-infrared spectroscopic measurements. Appl Spectrosc, 2000, 54(2): 268–276

    Article  CAS  Google Scholar 

  14. Stubbs J M, Siepmann J I. Aggregation in dilute solution of 1-hexanol in n-hexane: A Monto Carlo simulation study. J Phys Chem B, 2002, 106(15): 3968–3978

    Article  CAS  Google Scholar 

  15. Czarnecki M A. Effect of temperature and concentration on self-association of octan-1-ol studied by two-dimensional fourier transform near-infrared correlation spectroscopy. J Phys Chem A, 2000, 104(27): 6356–6361

    Article  CAS  Google Scholar 

  16. Czarnecki M A. Near-infrared spectroscopic study of hydrogen bonding in chiral and racemic octan-2-ol. J Phys Chem A, 2003, 107(12): 1941–1944

    Article  CAS  Google Scholar 

  17. Provencal R A, Casaes R N, Roth K, et al. Hydrogen bonding in alcohol clusters: A comparative study by infrared cavity ringdown laser absorption spectroscopy. J Phys Chem A, 2000, 104(7): 1423–1429

    Article  CAS  Google Scholar 

  18. Zana R, Michels B. Fluorescence probing and ultrasonic absorption study of the self-association of 1-butanol in aqueous solution. J Phys Chem-US, 1989, 93(6): 2643–2648

    Article  CAS  Google Scholar 

  19. D’Angelo M, Onori G, Santucci A. Self-association of monohydric alcohols in water: Compressibility and infrared absorption measurements. J Chem Phys, 1994, 100(4): 3107–3113

    Article  CAS  Google Scholar 

  20. Egashira K, Nishi N. Low-frequency raman spectroscopy of ethanol-water binary solution: Evidence for self-association of solute and solvent molecules. J Phys Chem B, 1998, 102(21): 4054–4057

    Article  CAS  Google Scholar 

  21. Max J, Daneault S, Chapdos C. 1-Propanol hydrate by IR spectroscopy. Can J Chem, 2002, 80(1): 113–123

    Article  CAS  Google Scholar 

  22. Mó O, Yúňez M, Elguero J. Cooperative (nonpairwise) effects in water trimers: An ab initio molecular orbital study. J Chem Phys, 1992, 97(9): 6628–6638

    Article  Google Scholar 

  23. Masella M, Flament J P. Relation between cooperative effects in cyclic water, methanol/water, and methanol trimers and hydrogen bonds in methanol/water, ethanol/water, and dimethylether/water heterodimers. J Chem Phys, 1998, 108(17): 7141–7151

    Article  CAS  Google Scholar 

  24. Keller H R, Massart D L. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal Chim Acta, 1991, 246(2): 379–390

    Article  CAS  Google Scholar 

  25. Windig W, Guilment J. Interactive self-modeling mixture analysis. Anal Chem, 1991, 63(14): 1425–1432

    Article  CAS  Google Scholar 

  26. De Juan A, Van den Bogaert B, Súnchez F C, et al. Application of the needle algorithm for exploratory analysis and resolution of HPLCDAD data. Chemom Intell Lab Syst, 1996, 33(2): 133–145

    Article  Google Scholar 

  27. Gemperline P J. Target transformation factor analysis with linear inequality constraints applied to spectroscopic-chromatographic data. Anal Chem, 1986, 58(13): 2656–2663

    Article  CAS  Google Scholar 

  28. Liang X, Andrews J E, De Haseth J A. Resolution of mixture components by target transformation factor analysis and determinant analysis for the selection of targets. Anal Chem, 1996, 68(2): 378–385

    Article  CAS  Google Scholar 

  29. Zhu Z L, Cheng W Z, Zhao Y. Iterative target transformation factor analysis for the resolution of kinetic-spectral data with an unknown kinetic model. Chemometr Intell Lab, 2002, 64(2): 157–167

    Article  CAS  Google Scholar 

  30. Lopes J A J, Rosado M T S, Leitao M L P, et al. Molecular structure of butanediol isomers in gas and liquid states: Combination of DFT calculations and infrared spectroscopy studies. J Phys Chem A, 2003, 107(19): 3891–3987

    Article  CAS  Google Scholar 

  31. Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, revision A. 11.4. Pittsbergh PA: Gaussian, Inc., 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dou XiaoMing.

Additional information

Supported by the National Natural Science Foundation of China and the Yellow River Water Conservancy Commission (Grant Nos. 50239080 and 40271019)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Dou, X., Zhao, H. et al. Study on multimers and their structures in molecular association mixture. SCI CHINA SER B 50, 23–31 (2007). https://doi.org/10.1007/s11426-007-0019-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0019-7

Keywords

Navigation