Skip to main content
Log in

Influence of amphiphilic structures on the stability of polyphenols with different hydrophobicity

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Autooxidation of five polyphenols representing range of different hydrophobicities (catechin gallate (CG), (-) catechin((-)C), epicatechin (EC), epigallocatechin gallate (EGCG) and epigallocatechin (EGC)) in three different aqueous solutions: molecular solution, micellar solution (Tween-20) and liposomal dispersion (soybean lecithin) was monitored by HPLC. The rate of oxidation of the five polyphenols was higher at pH 4.5 than at pH 3.5. Compared with the control, addition of Tween-20 (micellar structure) and lecithin (liposomal structure) significantly decreased the degradation of polyphenols. In the presence of lecithin the autooxidation of all the five polyphenols was slower than in the presence of Tween-20. The effective protection of the colloidal structures was compared with the hydrophobicity of the polyphenols estimated from the partitioning between octanol and water. The protection from oxidation in the presence of the colloidal structures (micellar or liposomal) increased with increasing partitioning of a polyphenol towards the hydrophobic environment. The protecting effect of the colloidal structures was more effective at pH 4.5 than at pH 3.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, Cao G H, Prior R L. Total antioxidant capacity of fruits. J Agric Food Chem, 1996, 44(3): 701–705

    Article  CAS  Google Scholar 

  2. Ock-Sook Y, Meyer A S, Frankel E N. Antioxidant activity of grape extracts in a lecithin liposome system. JAOCS, 1997, 74(6): 1301–1306

    Google Scholar 

  3. Cheynier V, Basire N, Rigaud J. Mechanism of trans-caffeoyltaric acid and catechin oxidation in model solution containg grape polyphenoloxidase. J Agric Food Chem, 1989, 37(4): 1069–1071

    Article  CAS  Google Scholar 

  4. Risch B, Herrmann K. Contents of hydroxycinnamic acid derivatives and catechins in pome and stone fruit. Z Lebensm Unters Forsch, 1988, 186: 225–230

    Article  CAS  Google Scholar 

  5. Czochanska Z, Lai Y F, Newman H, et al. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J Chem Soc, 1980, Perkin I: 2278–2285

  6. Kim D O, Jeong S W, Lee C Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem, 2003, 81(2): 321–326

    Article  CAS  Google Scholar 

  7. Chun O K, Kim D-O, Lee C Y. Superoxide radical scavenging activity of the major polyphenols in fresh plum. J Agric Food Chem, 2003, 51(27): 8067–8072

    Article  CAS  Google Scholar 

  8. Doll R. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc, 1990, 49(1): 119–131

    Article  CAS  Google Scholar 

  9. Ames B M, Shingena M K, Hagen T M. Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA, 1993, 90(11): 7915–7922

    Article  CAS  Google Scholar 

  10. Dragsted L O, Strube M, Larsen J C. Cancer-protective factors in fruits and vegetables: Biochemical and biological background. Pharmacol Toxicol (Suppl. 1), 1993, 72(1): 116–135

    Article  Google Scholar 

  11. Sun J, Chu Y F, Wu X, et al. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem, 2002, 50(25): 7449–7454

    Article  CAS  Google Scholar 

  12. Chun O K, Kim D O, Smith N, et al. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J Sci Food Agric, 2005, 85(10): 1715–1724

    Article  CAS  Google Scholar 

  13. Armstrong B K, Mann J I, Adelstein A M, et al. Commodity consumption and ischemic heart disease mortality, with special reference to dietary practices. J Chron Dis, 1975, 28(2): 455–469

    Article  CAS  Google Scholar 

  14. Mathew A G, Parpia H A B. Food browning as a polyphenol reaction. Adv Food Res, 1971, 19(1): 75–145

    Article  CAS  Google Scholar 

  15. Young D A, Young E, Roux D G, et al. Synthesis of (+)-catechin and (+)-mesquitol, conformation of bis (+)-catechins. J Chem Soc, Perkin Trans, 1987, 1: 2345–2351

    Article  Google Scholar 

  16. Jensen O N, Pedersen J A. The oxidative transformation of (+)-catechin and (-) epicatechin as studied by ESR. Tetrahedron Lett, 1983, 39: 1609–1615

    CAS  Google Scholar 

  17. Goodenough P W, Kessell S, Lea A G H, et al. Mono-and diphe-nolase activity from fruit of Malus pumila. Phytochemistry, 1983, 22(2): 359–363

    Article  CAS  Google Scholar 

  18. Rouet-Mayer M A, Ralambosa J, Philippon J. Roles of o-quinones and their polymers in the enzymic browning of apples. Phytochemistry, 1990, 29(2): 435–440

    Article  CAS  Google Scholar 

  19. Oszmianski J, Lee C Y. Enzymatic oxidative reaction of catechin and chlorogenic acid in a model system. J Agric Food Chem, 1990, 38(5): 1202–1204

    Article  CAS  Google Scholar 

  20. Guyot S, Cheynier V, Souquet J M, et al. Influence of pH on the enzymatic oxidation of (+)-catechin in model systems. J Agric Food Chem, 1995, 43(9): 2458–2462

    Article  CAS  Google Scholar 

  21. Weinges K. Enzymatische dehydrierung des(+)-catechins. Acta Phys Chim, Debrecen, 1971, 15(1): 265–272

    Google Scholar 

  22. Richard-Forget F C, Gauillard F. Oxidation of chlorogenic acid, catechins, and 4-methyl catechol in model solution by combinations of pear (pyrus communis Cv. Williams) polyphenol oxidase and peroxidase: A possible involvement of peroxidase in enzymatic browning. J Agric Food Chem, 1997, 45(7): 2472–2476

    Article  CAS  Google Scholar 

  23. Larsson K. Lipids-molecular Organization. Physical Functions and Technical Applications. Dundee: The Oily Press, 1994

    Google Scholar 

  24. Laha S, Luthy R G Effect of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol Bioeng, 1992, 40(4): 1367–1380

    Article  CAS  Google Scholar 

  25. Bergenståhl B, Fontell K. Phase equilibria in the system soybean lecithin/water. Prog Coll Pol Sci S, 1983, 68(1): 48–52

    Google Scholar 

  26. Cheynier V, Osse C, Rigaud J. Oxidation of grape juice phenolic compounds in model solutions. J Food Sci, 1988, 53(5): 1729–1732

    Article  CAS  Google Scholar 

  27. Paganga G, Al-Hashim H, Khodr H, et al. Mechanisms of antioxidant activities of quercetin and catechin. Redox Rep, 1996, 2: 359–364

    CAS  Google Scholar 

  28. Hou W C, Lin R D, Lee T H, et al. The phenolic constituents and free radical scavenging activities of Gynura formosana Kiamnra. J Sci Food Agric, 2005, 85(4): 615–621

    Article  CAS  Google Scholar 

  29. Inoue K C, Murayama S H, Seshimo F M, et al. Identification of phenolic compound in manuka honey as specific superoxide anion radical scavenger using electron spin resonance (ESR) and liquid chromatography with coulometric array detection. J Sci Food Agric, 2005, 85(5): 872–878

    Article  CAS  Google Scholar 

  30. Cogan U, Shinitzky M, Weber G, et al. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions. Biochemistry, 1973, 12(2): 521–527

    Article  CAS  Google Scholar 

  31. Victoria E J, Barber A A. Peroxidation of microsomal membrane protein-lipid complexes. Lipids, 1969, 4(2): 582–588

    Article  CAS  Google Scholar 

  32. Pryor W A, Smith K. The viscosity dependence of bond homolysis. A qualitative and semiquantitative test for cage return. J Am Chem Soc, 1970, 92(12): 5403–5405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin QinLu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Q., Wang, J., Qin, D. et al. Influence of amphiphilic structures on the stability of polyphenols with different hydrophobicity. SCI CHINA SER B 50, 121–126 (2007). https://doi.org/10.1007/s11426-007-0009-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0009-9

Keywords

Navigation