Skip to main content
Log in

Self-assembly behavior of phenyl modified β-cyclodextrins

  • Published:
Science in China Series B Aims and scope Submit manuscript

Abstract

The self-assembly behavior of mono(6-phenolic-6-deoxy)-β-cyclodextrin (1) both in solution and the solid state is comparatively studied by X-ray crystallography and 1H NMR spectroscopy. The results obtained show that the phenolic groups in the crystal 1 can successively penetrate into the adjacent β-cyclodextrin cavities from the secondary side to form head-to-tail linear polymeric supramolecule with a 2-fold screw axis. The self-assembly behavior also can be determined in D2O solution, giving a self-association constant of 240 mol−1·L. Using the present and previous structures reported for the relevant β-cyclodextrin derivatives, i.e., mono(6-anilino-6-deoxy)-β-cyclodextrin (2), mono(6-phenylselenyl-6-deoxy)-β-cyclodextrin (3), and mono(6-phenylthio-6-deoxy)-β-cyclodextrin (4), we further reveal the factors governing the formations of supramolecular assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH, 1995

    Google Scholar 

  2. Harada A. Cyclodextrin-based molecular machines. Acc Chem Res, 2001, 34(6): 456–464

    Article  CAS  Google Scholar 

  3. Khan A R, Forgo P, Stine K J, et al. Methods for selective modifications of cyclodextrins. Chem Rev, 1998, 98(5): 1977–1996

    Article  CAS  Google Scholar 

  4. Song L X, Meng Q J, You X Z. Cyclodextrins and their inclusion compounds. Chinese J Inorg Chem (in Chinese), 1997, 13(4): 368–374

    CAS  Google Scholar 

  5. Harata K. Structural aspects of stereodifferentiation in the solid state. Chem Rev, 1998, 98(5): 1803–1827

    Article  CAS  Google Scholar 

  6. Harata K, Takenaka Y, Yoshida N. Crystal structures of 6-deoxy-6-monosubstituted β-cyclodextrins, substituted-regulated one-dimensional arrays of macrocycles. J Chem Soc, Perkin Trans 2, 2001, (9): 1667–1673

  7. Harata K, Rao C T, Pitha J. Crystal structure of 6-O-[(R)-2-hydroxypropyl] cyclomaltoheptaose and 6-O-[(S)-2-hydroxypropyl] cyclomaltoheptaose. Carbohydr Res, 1993, 247: 83–98

    Article  CAS  Google Scholar 

  8. Shen X J, Chen H L, Yu F, et al. A new type of [2] and [3] pseudorotaxane composed of β-cyclodextrin and bisimidazolyl compounds. Tetrahedron Lett, 2004, 45(36): 6813–6817

    Article  CAS  Google Scholar 

  9. Ma S K, Wang J L, Li A X, et al. Synthesis and crystal structure of hydroquinone-β-cyclodextrin complex. Chin Sci Bull, 2001, 46(5), 390–392

    Article  CAS  Google Scholar 

  10. Liu Y, Fan Z, Zhang H Y, et al. Supramolecular self-assemblies of β-cyclodextrins with aromatic tethers: Factors governing the helical columnar versus linear channel superstructures. J Org Chem, 2003, 68(22): 8345–8352

    Article  CAS  Google Scholar 

  11. Liu Y, You C C, Zhang M, et al. Molecular interpenetration within the columnar structure of crystalline anilino-β-cyclodextrin. Org Lett, 2000, 2(18): 2761–2763

    Article  CAS  Google Scholar 

  12. Fan Z, Zhao Y L, Liu Y. Molecular self-assembly behavior of mono[6-O-6-(4-carboxyl-phenyl)]-β-CD in solution and solid state. Chin Sci Bull, 2003, 48(15): 1535–1538

    Article  CAS  Google Scholar 

  13. Zhao Y L, Liu Y. Self-assembly behavior of inclusion complex formed by β-cyclodextrin with α-aminopyridine. Sci China Ser B-Chem, 2004, 47(3): 200–205

    Article  CAS  Google Scholar 

  14. Mentzafos D, Terzis A, Coleman A W, et al. The crystal structure of 6I-(6-aminohexyl)amino-6I-deoxycyclomaltoheptaose. Carbohydr Res, 1996, 282: 125–135

    Article  CAS  Google Scholar 

  15. Hirotsu K, Higuchi T, Fujita K, et al. Polymeric inclusion compound derived from β-cyclodextrin. J Org Chem, 1982, 47(6): 1143–1144

    Article  CAS  Google Scholar 

  16. Kamitori S, Hirotsu K, Higuchi T, et al. Structural study of monosubstituted β-cyclodextrins. Crystal structures of phenythio-β-cyclodextrin and phenylsulphinyl-β-cyclodextrin and spectroscopic study of related compounds in aqueous solution. J Chem Soc, Perkin Trans 2, 1987, (1): 7–14

  17. Petter R C, Salek J S, Sikorski C T, et al. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J Am Chem Soc, 1990, 112(10): 3860–3868

    Article  CAS  Google Scholar 

  18. Liu Y, Yang E C, Yang Y W, et al. Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified β-cyclodextrins possessing simple aromatic tethers. J Org Chem, 2004, 69(1): 173–180

    Article  CAS  Google Scholar 

  19. Schneider H J, Hacker F, Rüdiger V, et al. NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev, 1998, 98(5): 1755–1785

    Article  CAS  Google Scholar 

  20. Park J W, Song H E, Lee S Y. Facile dimerization and circular dichroism characteristics of 6-O-(2-sulfonato-6-naphthyl)-β-cyclodextrin. J Phys Chem B, 2002, 106(20): 5177–5183

    Article  CAS  Google Scholar 

  21. Brewster R E, Shuker S B. Molecular recognition in methanol: The first example of hydrogen-bond-mediated self-association of a calix[4]arene in polar, protic solvent. J Am Chem Soc, 2002, 124(27): 7902–7903

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Liu, Y. Self-assembly behavior of phenyl modified β-cyclodextrins. SCI CHINA SER B 49, 230–237 (2006). https://doi.org/10.1007/s11426-006-0230-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-0230-y

Keywords

Navigation