Skip to main content
Log in

Aspects of recent developments in analytical chemometrics

  • Published:
Science in China Series B Aims and scope Submit manuscript

Abstract

Some aspects of recent developments in analytical chemometrics are discussed, in particular the developments viewed from the angle of the research efforts undertaken in authors’ laboratories. The topics concerned include resolution of high-order chemical data, morphological theory and methodology for chemical signal processing, multivariate calibration and chemical pattern recognition for solving complex chemical problems, and resolution of two-way chemical data from hyphenated chromatographic instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Anal Chem, 1986, 58(2): 496–499

    Article  CAS  Google Scholar 

  2. Wilson B, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. J Chemometr, 1989, 3(3): 493–498

    Article  CAS  Google Scholar 

  3. Sanchez E, Kowalski B R. Tensorial resolution: A direct trilinear decomposition. J Chemometr, 1990, 4(1): 29–45

    Article  CAS  Google Scholar 

  4. Li S, Hamilton C, Gemperline P. Generalized rank annihilation method using similarity transformations. Anal Chem, 1992, 64(6): 599–607

    Article  CAS  Google Scholar 

  5. Booksh K S, Lin Z, Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Anal Chem, 1994, 66: 2561–2569

    Article  CAS  Google Scholar 

  6. Carroll J D, Chang J J. Analysis of individual differences I multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrica, 1970, 35(3): 283–391

    Article  Google Scholar 

  7. Kiers H A L, Krijnen W P. An efficient algorithm for PARAFAC of three-way data with large numbers of observation units. Psychometrica, 1991, 56(1): 147–152

    Article  Google Scholar 

  8. Krijnen W P. The Analysis of Three-way Arrays by Constrained PARAFAC Methods. Leiden: DSWO Press, 1993

    Google Scholar 

  9. Bro R. PARAFAC. Tutorial and applications. Chemometrics Intell Lab Syst, 1997, 38(2): 149–171

    Article  CAS  Google Scholar 

  10. Rayens W S, Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics Intell Lab Syst, 1997, 38(2): 173–181

    Article  CAS  Google Scholar 

  11. Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Anal Chim Acta, 2001, 444: 295–307

    Article  CAS  Google Scholar 

  12. Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Anal Chem, 1999, 71: 4254–4262

    Article  CAS  Google Scholar 

  13. Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. J Chemometr, 2000, 14: 15–36

    Article  CAS  Google Scholar 

  14. Wu H L, Shibukawa M, Oguma K. Algorithms for high-dimensional data. J Chemometr, 1998, 12: 1

    Article  CAS  Google Scholar 

  15. Chen Z P, Wu H L, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. J Chemometr, 2001, 15: 149–167

    Article  CAS  Google Scholar 

  16. Chen Z P, Wu H L, Jiang F H, et al. A novel trilinear decomposition algorithm for second-order linear calibration. Chemometrics Intell Lab Syst, 2000, 52: 75–86

    Article  Google Scholar 

  17. Mahedero M C, Mora D N, Munoz de la Pena A, et al. Strategies for solving matrix effects in the analysis of sulfathiazole in honey samples using three-way photochemically induced fluorescence data. Talanta, 2004, 65: 806–813

    Article  CAS  Google Scholar 

  18. Espinosa-Mansilla A, Munoz de la Pena A, Gomez D, et al. Photoinduced spectrofluorimetric determination of fluoroquinolones in human urine by using three-and two-way spectroscopic data and multivariate calibration. Analytica Chimica Acta, 2005, 531(2): 257–266

    Article  CAS  Google Scholar 

  19. Escandar G M, Gonzalez G D, et al. Determination of carbanazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection. Analytica Chimica Acta, 2004, 506(2): 161–170

    Article  CAS  Google Scholar 

  20. Arancibia J A, Alejandro C, et al. First-and second-order multi-variate calibration applied to biological samples: Determination of anti-inflammatories in serum and urine. Anal Bioanaly Chem, 2002, 374: 451–459

    Article  CAS  Google Scholar 

  21. Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60: 1113–1121

    Article  CAS  Google Scholar 

  22. Hergert L A, Escandar G M. Spectrofluorimetric study of the β-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. Talanta, 2003, 60: 235–246

    Article  CAS  Google Scholar 

  23. Tan Y X, Wang J H, Wu H L, et al. Resolution of kinetic system of simultaneous degradations of chlorophyll a and b by PARAFAC. Anal Chim Acta, 2000, 412: 195–202

    Article  CAS  Google Scholar 

  24. Malinowasky E R, Howary D G. Factor Analysis in Chemistry, 3rd ed. New York: Wiley-Intersicience, 2002

    Google Scholar 

  25. Gemperline P. Editorial of the March-April issue. J Chemometr, 1999, 13: 67–70

    Article  Google Scholar 

  26. Rossi T M, Warner I M. Rank estimation of excitation-emission matrices using frequency analysis of eigenvectors. Anal Chem, 1986, 58: 810–815

    Article  CAS  Google Scholar 

  27. Wang J H, Liang Y Z, Jiang J H, et al. Local chemical rank estimation of the two-way data in the presence of heteroscedastic noise: A morphological approach. Chemometrics Intell Lab Syst, 1996, 32(2): 265–272

    Article  Google Scholar 

  28. Liang Y Z, Kvalheim O M, Manne R. White, grey and black — A classification of methods for quantitative analysis of multicomponent analytical systems. Chemometrics Intell Lab Syst, 1993, 18: 235–250

    Article  CAS  Google Scholar 

  29. Keller H R, Massart D L, Liang Y Z, et al. Evolving factor analysis in the presence of heteroscedastic noise. Anal Chim Acta, 1992, 263: 29–36

    Article  CAS  Google Scholar 

  30. Wang J H, Jiang J H, Xiong J F, et al. Chemical rank estimation-emmision matrices using a morphological approach. J Chemometr, 1998, 12: 95–104

    Article  CAS  Google Scholar 

  31. Wang J H, Xie Y L, Yu R Q. Maximum sum of binary coded residuals (MASBR) regression as robust procedure for treatment of spectral data. J Chemometr, 1995, 9: 373–387

    Article  Google Scholar 

  32. Bezdek J C, Coray C, Gunderson R, et al. Detection and characterization of cluster substructure (I): Linear structure: Fuzzy c-lines. SIAM J Appl Math, 1981, 40: 339–357

    Article  Google Scholar 

  33. Bezdek J C, Coray C, Gunderson R, et al. Detection and characterization of cluster substructure (I): Linear structure: Fuzzy c-lines. SIAM J Appl Math, 1981, 40: 358–372

    Article  Google Scholar 

  34. Naes T. Multivariate calibration when data are split into subsets. J Chemometr, 1991, 5: 487–532

    Article  CAS  Google Scholar 

  35. Naes T, Isaksson T. Splitting of calibration data by cluster analysis. J Chemometr, 1991, 5: 49–65

    Article  CAS  Google Scholar 

  36. Wang J H, Jiang J H, Yu R Q. Detection of linear substructures in calibration model by robust approach: Maximum sum of binary coded residuals (MASBR) regression. J Chemometr, 1996, 10: 295–307

    Article  CAS  Google Scholar 

  37. Song X H, Yu R Q. Artificial neural networks applied to the quantitative structure-activity relationship study of dihydropteridine reductase inhibitors. Chemometrics Intell Lab Syst, 1993, 19: 101–109

    Article  CAS  Google Scholar 

  38. Song X H, Chen Z, Yu R Q. Artificial neural networks applied to the quantitative structure-activity relationship study of para-substituted phenols. Sci China Ser B-Chem, 1993, 36(12): 1443–1450

    CAS  Google Scholar 

  39. Song X H, Zhuo C, Yu R Q. Artificial neural networks applied to the classification of complex fluorides based on the transition emission of the europium (II) ion. Chemometrics Intell Lab Syst, 1992, 16: 213–219

    Article  CAS  Google Scholar 

  40. Jiang J H, Wang J H, Liang Y Z, et al. A non-linear mapping-based generalized back-propagation network for unsupervised learning. J Chemometr, 1996, 10: 241–252

    Article  CAS  Google Scholar 

  41. Jiang J H, Wang J H, Chu X, et al. Neural network learning to non-linear principal component analysis. Analytica Chimica Acta, 1996, 336: 209–222

    Article  CAS  Google Scholar 

  42. Jiang J H, Wang J H, Chu X, et al. Non-linear discriminant feature extraction using generalized back-propagation network. J Chemometr, 1996, 10: 281–294

    Article  CAS  Google Scholar 

  43. Li Y, Jiang J H, Chen Z P, et al. A new method based on modified countrpropagation network algorithm for chemical pattern recognition. Analytica Chimica Acta, 1999, 388: 161–170

    Article  CAS  Google Scholar 

  44. Jiang J H, Wang J H, Song X H, et al. Network training and architecture optimization by a recursive approach and a modified genetic algorithm. J Chemometr, 1996, 10: 253–267

    Article  CAS  Google Scholar 

  45. Jiang J H, Wang J H, Chu X, et al. Clustering data using a modified integer genetic algorithm (IGA). Analytica Chimica Acta, 1997, 354: 263–274

    Article  CAS  Google Scholar 

  46. Chen Z P, Jiang J H, Yang L, et al. Nonlinear mapping using real-valued genetic algorithm. Chemometrics Intell Lab Syst, 1999, 45: 409–418

    Article  CAS  Google Scholar 

  47. Xie H P, Jiang J H, Cui H, et al. A new redundant variable pruning approach — minor latent variable perturbation — PLS used for QSAR studies on anti-HIV drugs. Computers & Chemistry, 2002, 26: 591–600

    Article  CAS  Google Scholar 

  48. Wallace R M. Analysis of absorption spectra of multicomponent systems. J Phys Chem, 1960, 64: 899–906

    CAS  Google Scholar 

  49. Maeder M, Zilian A. Evolving factor analysis, a new multivariate technique in chromatography. Chemometrics Intell Lab Syst, 1988, 3: 205–215

    Article  CAS  Google Scholar 

  50. Malinowski E R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. J Chemometr, 1992, 6(1): 29–40

    Article  CAS  Google Scholar 

  51. Kvalheim O M, Liang Y Z. Heuristic evolving latent projection—Resolving two-way multicomponent data (I): Selectivity, latent-projective graph, datascope, local rank analysis and unique resolution. Anal Chem, 1992, 64: 936–945

    Article  CAS  Google Scholar 

  52. Liang Y Z, Kvalheim O M, Keller H R, et al. Heuristic evolving latent projection — Resolving two-way multicomponent data (II): Detection and resolution of minor component. Anal Chem, 1992, 64: 946–953

    Article  CAS  Google Scholar 

  53. Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemometrics Intell Lab Syst, 1999, 45: 171–176

    Article  CAS  Google Scholar 

  54. Xu C J, Jiang J H, Liang Y Z. A new method based on counter-propagation network algorithm for chemical pattern recognition. Analyst, 1999, 124: 1471–1476

    Article  CAS  Google Scholar 

  55. Gong F, Liang Y Z, Cui H, Chau F T, Chan B T P. Gas chromatography-mass spectrometry and chemometric resolution applied to the determination of essential oils in Cortex Cinnamomi. J Chromatogr A, 2001, 905(1): 193–205

    Article  CAS  Google Scholar 

  56. Zhao Z, Malinowski E R. Detection and identification of a methanol-water complex by factor analysis of infrared spectra. Anal Chem, 1999, 71: 602–608

    Article  CAS  Google Scholar 

  57. Shen H L, Liang Y Z, Yu R Q, et al. Analysis of PAHs in air-borne particulates in Hong Kong city by heuristic evolving latent projections. Sci China Ser B-Chem, 1998, 41: 21–29

    Article  CAS  Google Scholar 

  58. Chen Z P, Jiang J H, Li Y, et al. Smoothed window factor analysis. Anal Chim Acta, 1999, 381: 233–246

    Article  CAS  Google Scholar 

  59. Chen Z P, Liang Y Z, Jiang J H, et al. Determination of the number of components in mixtures using a new approach incorporating chemical information. J Chemometr, 1999, 13: 15–30

    Article  CAS  Google Scholar 

  60. Meloun M, Capek J, Miksik P, et al. Critical comparison of methods predicting the number of components in spectroscopic data. Anal Chim Acta, 2000, 423: 51–68

    Article  CAS  Google Scholar 

  61. Liang Y Z, Kvalheim O M. Unique resolution of hidden minor peaks in multidetection chromatography by first-order differentiation and orthogonal projections. Anal Chim Acta, 1993, 276: 425–440

    Article  CAS  Google Scholar 

  62. Gong F, Liang Y Z, Xu Q S, et al. Gas chromatography-mass spectrometry and chemometric resolution applied to the determination of essential oils in Cortex Cinnamomi. J Chromatogr A, 2001, 905: 193–205

    Article  CAS  Google Scholar 

  63. Wang Z G, Chen Z P, Gong F, et al. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks. The Analyst, 2002, 127: 623–628

    Article  CAS  Google Scholar 

  64. Liang Y Z, Kvalheim O M. Diagnosis and resolution of multi-wavelength chromatograms by rank map, orthogonal projections and sequential rank analysis. Anal Chim Acta, 1994, 292: 5–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ruqin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Wu, H., Shen, G. et al. Aspects of recent developments in analytical chemometrics. SCI CHINA SER B 49, 193–203 (2006). https://doi.org/10.1007/s11426-006-0193-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-0193-z

Keywords

Navigation