Skip to main content
Log in

Chemical modification and the photoluminescence stabilization of titanic acid nanotubes

  • Published:
Science in China Series B Aims and scope Submit manuscript

Abstract

Titanic acid nanotubes (H2Ti2O4(OH)2) were surface-modified with cetyl alcohol through dehydration reaction because of existence of Ti-OH. The modified nanotubes were characterized by transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectrometry and photoluminescence (PL) spectra. The results indicate that the modified nanotubes can be easily dispersed into organic solvent such as chloroform and toluene in contrast with the unmodified nanotubes, which makes it easier to be assembled by LB technique. Moreover, the Ti-O-CH2(CH2)14CH3 on the surface of the nanotubes can hinder the adsorption of water and consequently the photoluminescence property of the nanotubes can be stabilized. Even though kept in humid condition or in air for a long time, the modified nanotubes also maintain the special photoluminescence property in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kasuga, T., Hiramatsu, M., Hoson, A. et al., Formation of titanium oxide nanotube, Langmuir, 1998, 14(12): 3160–3163.

    Article  CAS  Google Scholar 

  2. Kasuga, T., Hiramatsu, M., Hoson, A. et al., Titania nanotubes prepared by chemical processing, Adv. Mater., 1999, 11(15): 1307–1311.

    Article  CAS  Google Scholar 

  3. Zhang, S., Zhou, J., Zhang, Z. et al., Morphological structure and physicochemical properties of nanotube TiO2, Chinese Science Bulletin, 2000, 45(16): 1533–1536.

    CAS  Google Scholar 

  4. Seo, D. S., Lee, J. K., Kim, H., Preparation of nanotube-shaped TiO2 powder, J. Crystal Growth, 2001, 229: 428–432.

    CAS  Google Scholar 

  5. Zhu, Y., Li, H., Koltypin, Y. et al., Sonochemical synthesis of titania whiskers and nanotubes, Chem. Commun., 2001: 2616–2617.

  6. Zhang, Q., Gao, L., Sun, J. et al., Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals, Chem. Lett., 2002, 226–227.

  7. Uchida, S., Chiba, R., Tomiha, M. et al., Application of titania nanotubes to a dye-sensitized solar cell, Electrochemistry, 2002, 70(6): 418–420.

    CAS  Google Scholar 

  8. Adachi, M., Okada, I., Ngamsinlapasathian, S. et al., Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes, Electrochemistry, 2002, 70(6): 449–452.

    CAS  Google Scholar 

  9. Du, G. H., Chen, Q., Che, R. C. et al., Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett., 2001, 79(22): 3702–3704.

    Article  CAS  Google Scholar 

  10. Chen, Q., Du, G. H., Zhang, S. et al., The structure of trititanate nanotubes, Acta Cryst. B, 2002, 58(4): 587–593.

    Article  CAS  Google Scholar 

  11. Chen, Q., Zhou, W., Du, G. H. et al., Trititanate nanotubes made via a single alkali treatment, Adv. Mater., 2002, 14(17): 1208–1211.

    Article  CAS  Google Scholar 

  12. Wang, Y. Q., Hu, G. Q., Duan, X. F. et al., Microstructure and formation mechanism of titanium dioxide nanotubes, Chem. Phys. Lett., 2002, 365: 427–431.

    CAS  Google Scholar 

  13. Yao, B. D., Chan, Y. F., Zhang, X. Y., Zhang, W. F. et al., Formation mechanism of TiO2 nanotube, Appl. Phys. Lett., 2003, 82(2): 281–283.

    Article  CAS  Google Scholar 

  14. Zhang, J., Guo, X., Jin, Z. et al., TEM study on the formation process of TiO2 nanotubes, Chin. Chem. Lett., 2003, 14(4): 419–422.

    CAS  Google Scholar 

  15. Zhang, S., Peng, L. M., Chen, Q. et al., Formation mechanism of H2Ti3O7 nanotubes, Phys. Rev. Lett., 2003, 91(25): 256103-1-4.

    Google Scholar 

  16. Sun, X., Li, Y., Synthesis and characterization of ion-exchangeable titanate nanotubes, Chem. Eur. J., 2003, 9(10): 2229–2238.

    Article  CAS  Google Scholar 

  17. Yang, J., Jin, Z., Wang, X. et al., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans., 2003, 3898–3901.

  18. Ma, R., Bando, Y., Sasaki, T., Nanotubes of lepidocrocite titanates, Chem. Phy. Lett., 2003, 380: 577–582.

    CAS  Google Scholar 

  19. Wang, W., Varghese, O. K., Paulose, M. et al., A study on the growth and structure of titania nanotubes, J. Mater. Res., 2004, 19(2): 417–422.

    Article  Google Scholar 

  20. Nakahira, A., Kato, W., Tamai, M. et al., Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources, J. Mater. Sci., 2004, 39: 4239–4245.

    Article  CAS  Google Scholar 

  21. Yuan, Z. Y., Su, B. L., Titanium oxide nanotubes, nanofibers and nanowires, Colloids and Surfaces A, 2004, 241: 173–183.

    CAS  Google Scholar 

  22. Bavykin, D. V., Parmon, V. N., Lapkin, A. A. et al., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem., 2004, 14: 3370–3377.

    Article  CAS  Google Scholar 

  23. Zhang, S., Li, W., Jin, Z. et al., Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid, Solid State Chem., 2004, 177: 1365–1371.

    CAS  Google Scholar 

  24. Qian, L., Jin, Z., Zhang, J. et al., Study of the visible-excitation luminescence of NTA-TiO2 (AB) with single-electron-trapped oxygen vacancies, Appl. Phys. A, 2005, 80: 1801–1806.

    Article  CAS  Google Scholar 

  25. Zhang, M., Jin, Z., Wang, X., Zhang, Z. et al., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2, J. Mole. Catal. A: Chem., 2004, 217: 203–210.

    CAS  Google Scholar 

  26. Ide, Y., Ogawa, M., Surface modification of a layered alkali titanate with organosilanes, Chem. Commun., 2003, 1262–1263.

  27. Tokudome, H., Miyauchi, M., Titanate nanotube thin films via alternate layer deposition, Chem. Commun., 2004, 958–959.

  28. Zhang, C., Jiang, X., Tian, B. et al., Modification and assembly of titanate sodium nanotubes, Colloids and Surfaces A: Physicochem, 2005, 257/258: 521–525.

    Google Scholar 

  29. Hermanson, K. D., Lumsdon, S. O., Williams, J. P. et al., Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions, Science, 2001, 294: 1082–1086.

    Article  CAS  Google Scholar 

  30. Messer, B., Song, J. H., Yang, P., Microchannel networks for nanowire patterning, J. Am. Chem. Soc., 2000, 122(41): 10232–10233.

    Article  CAS  Google Scholar 

  31. Huang, Y., Duan, X., Wei, Q. et al., Directed assembly of one-dimensional nanostructures into functional networks, Science, 2001, 291: 630–633.

    Article  CAS  Google Scholar 

  32. Kim, F., Kwan, S., Akana, J., Yang, P., Langmuir-Blodgett nanorod assembly, J. Am. Chem. Soc., 2001, 123(18): 4360–4361.

    Article  CAS  Google Scholar 

  33. Yang, P., Kim, F., Langmuir-Blodgett assembly of one-dimensional nanostructures, Chemphychem., 2002, 3: 503–506.

    CAS  Google Scholar 

  34. Gong, X., Liu, J., Baskaran, S. et al., Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater., 2000, 12(4): 1049–1052.

    Article  CAS  Google Scholar 

  35. Chen, R., Zhang, Y., Wang, D. et al., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 2001, 123(16): 3838–3839.

    Article  CAS  Google Scholar 

  36. Li, W., Wang, X., Li, Y., Single-step in situ synthesis of double bond-grafted yttrium-hydroxide nanotube core-shell structures, Chem. Commun., 2004, 2: 164–165.

    Google Scholar 

  37. Brandriss, S., Margel, S., Synthesis and characterization of self-Assembled hydrophobic monolayer coatings on silica colloids, Langmuir, 1993, 9: 1232–1240.

    Article  CAS  Google Scholar 

  38. Yi, J. J., Yu, P., Xu, X. X. et al., Synthesis of novel half-metallocene complexes ([O, O]CpTiCl) containing bisphenoxy ligands and their catalytic properties for ethylene polymerization, Acta Polymerica Sinica, 2001, (3): 342–346.

  39. Agarwal, S., Sharma, G. L., Manchanda, R., Electrical conduction in (Ba,Sr)TiO3 thin film MIS capacitor under humid conditions, Solid State Communications, 2001, 119: 681–686.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Zuliang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, Y., Zhang, C. et al. Chemical modification and the photoluminescence stabilization of titanic acid nanotubes. SCI CHINA SER B 49, 155–161 (2006). https://doi.org/10.1007/s11426-006-0155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-0155-5

Keywords

Navigation