Skip to main content
Log in

Applications of self-consistent field theory in polymer systems

  • Published:
Science in China Series B Aims and scope Submit manuscript

Abstract

The self-consistent field theory (SCFT) based upon coarse-grained model is especially suitable for investigating thermodynamic equilibrium morphology and the phase diagram of inhomogeneous polymer systems subjected to phase separation. The advantage of this model is that the details of the chain such as the architecture of the chain and the sequence of blocks can be considered. We present here an overview of SCFT approach and its applications in polymeric systems. In particular, we wish to focus on our group’s achievements in applications of SCFT in such fields: simulation of microphase separation morphologies of multiblock copolymers with a complex molecular architecture, interactions between brush-coated sheets in a polymer matrix, mixtures of flexible polymers and small molecular liquid crystals at the interface, shapes of polymer-chain-anchored fluid vesicles, self-assembled morphologies of block copolymers in dilute solution, and so on. Finally, the further developments as well as the perspective applications of SCFT are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadjichristidis, N., Pispas, S., Floudas, G., Block Copolymers, Hoboken: John Wiley & Sons, 2003.

    Google Scholar 

  2. Leibler, L., Theory of microphase separation in block copolymers, Macromolecules, 1980, 13: 1602–1617.

    Article  CAS  Google Scholar 

  3. Semenov, A. N., Contribution to the theory of microphase layering in block-copolymer melts, Sov. Phys. JEPT, 1985, 61: 733–742.

    Google Scholar 

  4. Milner, S. T., Witten, T. A., Cates, M. E., A parabolic density profile for grafted polymers, Europhys. Lett., 1988, 5: 413–418.

    CAS  Google Scholar 

  5. Matsen, M. W., The standard Gaussian model for block copolymer melts, J. Phys: Condens. Matter, 2002, 14: R21–R47.

    Article  CAS  Google Scholar 

  6. Matsen, M. W., Schick, M., Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett., 1994, 72: 2660–2663.

    Article  CAS  Google Scholar 

  7. Feynman, R. P., Hibbs, A. R., Quantum Mechanics and Path Integrals, New York: McGraw-Hill Book Company, 1965.

    Google Scholar 

  8. Edwards, S. F., The statistical mechanics of polymers with excluded volume, Proc. Phys. Soc., 1965, 85: 613–624.

    CAS  Google Scholar 

  9. Edwards, S. F., Theory of polymer solutions at intermediate concentration, Proc. Phys. Soc., 1966, 88: 265–280.

    Article  CAS  Google Scholar 

  10. Flory, P. J., The configuration of real polymer chains, J. Chem. Phys., 1949, 17: 303–310.

    CAS  Google Scholar 

  11. Ryder, L. H., Quantum Field Theory, 2nd ed., Cambridge: Cambridge University Press, 1996.

    Google Scholar 

  12. Fredrickson, G. H., Ganesan, V., Drolet, F., Field-theoretic computer simulation methods for polymers and complex fluids, Macromolecules, 2002, 35: 16–39.

    Article  CAS  Google Scholar 

  13. deGennes, P. G., Prost, J., The Physics of Liquid Crystals, Oxford: Clarendon press, 1993.

    Google Scholar 

  14. Shi, A. C., Noolandi, J., Theory of inhomogeneous weakly charged polyelectrolytes, Macromol. Theory Simul., 1999, 8: 214–229.

    Article  CAS  Google Scholar 

  15. Helfand, E., Theory of inhomogeneous polymers: Fundamentals of the Gaussian random-walk model, J. Chem. Phys., 1975, 62: 999–1005.

    CAS  Google Scholar 

  16. Morse, D. C., Fredrickson, G. H., Semiflexible polymers near Interfaces, Phys. Rev. Lett., 1994, 73: 3235–3238.

    Article  CAS  Google Scholar 

  17. Drolet, F., Fredrickson, G. H., Combinatorial screening of complex block copolymer assembly with self-consistent field theory, Phys. Rev. Lett., 1999, 83: 4317–4320.

    Article  CAS  Google Scholar 

  18. Holden, G., Legge, N. R., Quirk, R. et al., Thermoplastic Elastomers, 2nd ed., Cincinnati: Hanser/Gardner Publishers, 1996.

    Google Scholar 

  19. Park, M., Harrison, C., Chaikin, P. M. et al., Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter, Science, 1997, 276: 1401–1404.

    Article  CAS  Google Scholar 

  20. Archibald, D. D., Mann, S., Template mineralization of self-assembled anisotropic lipid microstructures, Nature, 1993, 364: 430–433.

    Article  CAS  Google Scholar 

  21. Morkved, T. L., Wiltzius, P., Jaeger, H. M. et al., Mesoscopic self-assembly of gold islands and diblock-copolymer films, Appl. Phys. Lett., 1994, 64: 422–424.

    Article  CAS  Google Scholar 

  22. Tang, P., Qiu, F., Zhang, H. D. et al., Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers, Phys. Rev. E, 2004, 69: 031803.

    Google Scholar 

  23. Tang, P., Qiu, F., Zhang, H. D. et al., Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers, J. Phys. Chem. B, 2004, 108: 8434–8438.

    CAS  Google Scholar 

  24. Hamley, I. W., The Physics of Block Copolymers, Oxford: Oxford University Press, 1998.

    Google Scholar 

  25. Bates, F. S., Fredrickson, G. H., Block copolymers — Designer soft materials, Physics Today, 1999, 52: 32–38.

    CAS  Google Scholar 

  26. Mogi, Y., Kotsuji, H., Kaneko, Y. et al., Tricontinuous morphology of triblock copolymers of the ABC type, Macromolecules, 1992, 25: 5412–5415.

    CAS  Google Scholar 

  27. Gido, S. P., Schwark, D. W., Thomas, E. L. et al., Observation of a non-constant mean curvature interface in an ABC triblock copolymer, Macromolecules, 1993, 26: 2636–2640.

    CAS  Google Scholar 

  28. Gemma, T., Hatano, A., Dotera, T., Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method, Macromolecules, 2002, 35: 3225–3237.

    Article  CAS  Google Scholar 

  29. He, X. H., Huang, L., Liang, H. J. et al., Self-assembly of star block copolymers by dynamic density functional theory, J. Chem. Phys., 2002, 116: 10508–10513.

    CAS  Google Scholar 

  30. Bohbot-Raviv, Y., Wang, Z. G., Discovering new ordered phases of block copolymers, Phys. Rev. Lett., 2000, 85: 3428–3431.

    Article  CAS  Google Scholar 

  31. Takano, A., Wada, S., Sato, S. et al., Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography, Macromolecules, 2004, 37: 9941–9946.

    Article  CAS  Google Scholar 

  32. Sioula, S., Hadjichristidis, N., Thomas, E. L., Direct evidence for confinement of junctions to lines in an 3 miktoarm star terpolymer microdomain structure, Macromolecules, 1998, 31: 8429–8432.

    CAS  Google Scholar 

  33. Doane, J. W., Vaz, N. A., Wu, B. G. et al., Field controlled light scattering from nematic microdroplets, Appl. Phys. Lett., 1986, 48: 269–271.

    Article  CAS  Google Scholar 

  34. Ding, J. D., Yang, Y. L., Birefringence patterns of nematic droplets, Jpn. J. Appl. Phys., 1992, 31: 2837–2845.

    CAS  Google Scholar 

  35. Drzaic, P. S., Polymer dispersed nematic liquid crystal for large area displays and light valves, J. Appl. Phys., 1986, 60: 2142–2148.

    Article  CAS  Google Scholar 

  36. Lin, Z. Q., Zhang, H. D., Yang, Y. L., Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field, Phys. Rev. E, 1998, 58: 5867–5872.

    CAS  Google Scholar 

  37. Yang, Y. L., Lu, J. M., Zhang, H, D. et al., Phase-equilibria in mixtures of thermotropic small molecular liquid-crystals and flexible polymers, Polym. J., 1994, 26: 880–894.

    Article  CAS  Google Scholar 

  38. Zhang, H. D., Li, F. M., Yang, Y. L., Statistical thermodynamics theory of phase equilibria in mixtures of thermotropic liquid-crystals and flexible polymers, Science in China, series B, 1995, 38: 412–421.

    CAS  Google Scholar 

  39. Chen, Y., Li, J., Zhang, H. D. et al., Theory of inhomogeneous polymers lattice model for the interface between flexible polymer and small molecular liquid crystal, Mol. Cryst. Liq. Cryst., 1995, 258: 37–50.

    CAS  Google Scholar 

  40. Zhu, J. X., Ding, J. D., Lu, J. M. et al., Monte Carlo simulation of the interface between flexible polymers and low molecular liquid crystals, Polymer, 39: 6455-6460.

  41. Wang, J. F., Zhang, H. D., Qiu, F. et al., Self-consistent field theory of mixtures of flexible polymers and small liquid crystalline molecules, Acta Chimica Sinica (in Chinese), 2003, 62: 1180–1185.

    Google Scholar 

  42. Zhang, H. D., Lin, Z. Q., Yan, D. et al., Phase separation in mixtures of thermotropic liquid crystals and flexible polymers, Science in China, Series B, 1997, 40: 128–136.

    CAS  Google Scholar 

  43. Giannelis, E. P., Krishnamoorti, R. K., Manias, E., Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes, Adv. Polym. Sci., 1999, 138: 107–147 and references therein.

    CAS  Google Scholar 

  44. de Gennes, P. G., Scaling Concepts in Polymer Physics, New York: Cornell University Press, 1985.

    Google Scholar 

  45. Aubouy, M., Fredrickson, G. H., Pincus, P. et al., End-tethered chains in polymeric matrices, Macromolecules, 1995, 28: 2979–2981.

    Article  CAS  Google Scholar 

  46. Leibler, L., Ajdari, A., Mourran, A. et al., Ordering in Macromolecular Systems (eds. Teramoto, A., Kobayashi, M., Norisuji, T.), Berlin: Springer Verlag, 1994.

    Google Scholar 

  47. Gay, C., Wetting of a polymer brush by a chemically identical polymer melt, Macromolecules, 1997, 30: 5939–5943.

    Article  CAS  Google Scholar 

  48. Ferreira, P. G., Ajdari, A., Leibler, L., Scaling law for entropic effects at interfaces between grafted layers and polymer melts, Macromolecules, 1998, 31: 3994–4003.

    Article  CAS  Google Scholar 

  49. Wang, R., Qiu, F., Zhang, H. D. et al., Interactions between brush-coated clay sheets in a polymer matrix, Phys. Rev. E, 2003, 118: 9447–9456.

    CAS  Google Scholar 

  50. Wang, R., Self-assembly of polymer fluids based on self-consistent field theory, Postdoc Report in Fudan University (in Chinese), 2003.

  51. Seifert, U., Lipowsky, R., Structure and Dynamics of Membranes (eds. Lipowsky, R., Sackmann, E.), Amsterdam: Elsevier Science B.V. 1995.

    Google Scholar 

  52. Tsafrir, I., Sagi, D., Arzi, T. et al., Pearling instabilities of membrane tubes with anchored polymers, Phys. Rev. Lett., 2001, 86: 1138–1141.

    Article  CAS  Google Scholar 

  53. Frette, V., Tsafrir, I., Guedeau-Boudeville, M. A. et al., Coiling of cylindrical membrane stacks with anchored polymers, Phys. Rev. Lett., 1999, 83: 2465–2468.

    Article  CAS  Google Scholar 

  54. Hiergeist, C., Lipowsky, R., Elastic properties of polymer-decorated membranes, J. Phys. II France, 1996, 6: 1465–1481.

    Article  CAS  Google Scholar 

  55. Kim, Y. W., Sung, W., Membrane curvature induced by polymer adsorption, Phys. Rev. E, 2001, 63: 041910.

    Google Scholar 

  56. Breidenich, M., Netz, R. R., Lipowsky, R. et al., The shape of polymer-decorated membranes, Europhys. Lett., 2000, 49: 431–437.

    Article  CAS  Google Scholar 

  57. Breidenich, M., Netz, R. R., Lipowsky, R. et al., Adsorption of polymers anchored to membranes, Eur. Phys. J. E, 2001, 5: 403–414.

    Article  CAS  Google Scholar 

  58. Helfrich, W., Elastic properties of lipid bilayers — Theory and possible experiments, Z. Naturforsch, 1973, C 28: 693–703.

    Google Scholar 

  59. Wang, J. F., Guo, K. K., Qiu, F. et al., Predicting shapes of polymer-chain-anchored fluid vesicles, Phys. Rev. E, 2005, 71: 041908.

    Google Scholar 

  60. Ou-Yang, Z. C., Helfrich, W., Instability and deformation of a spherical vesicle by pressure, Phys. Rev. Lett., 1989, 59: 2486–2488.

    Google Scholar 

  61. Guo, K. K., Theoretical studies on the shapes of biological membranes, PhD Thesis in Fudan University (in Chinese), 2005.

  62. Guo, K. K., Qiu, F., Zhang, H. D., Yang, Y. L., Predicting shapes of polymer-chain-anchored fluid vesicles, J. Chem. Phys., 2005, 71: 041908.

    Google Scholar 

  63. Yu, G., Eisenberg, A., Multiple morphologies formed from an amphiphilic ABC triblock copolymer in solution, Macromolecules, 1998, 31: 5546–5549.

    CAS  Google Scholar 

  64. He, X. H., Liang, H. J., Huang, L. et al., Complex microstructures of amphiphilic diblock copolymer in dilute solution, J. Phys. Chem. B, 2004, 108: 1731–1735.

    CAS  Google Scholar 

  65. Zhu, J. T., Jiang, Y., Liang, H. J. et al., Self-assembly of ABA amphiphilic triblock copolymers into vesicles in dilute solution, J. Phys. Chem. B, 2005, 109: 8619–8625.

    CAS  Google Scholar 

  66. Wang, R., Tang, P., Qiu, F. et al., Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory, J. Phys. Chem. B, 2005, 109: 17120–17127.

    CAS  Google Scholar 

  67. Lambooy, P., Russell, T. P., Kellogg, G. L. et al., Observed frustration in confined block copolymers, Phys. Rev. Lett., 1994, 72: 2899–2902.

    Article  CAS  Google Scholar 

  68. Wu, Y. Y., Cheng, G. S., Katsov, K. et al., Composite mesostructures by nano-confinement, Nature Materials, 2004, 3: 816–822.

    CAS  Google Scholar 

  69. Yang, Y. Z., Qiu, F., Zhang, H. D. et al., Microphases of asymmetric diblock copolymers in confined thin films, Acta Chimica Sinica (in Chinese), 2004, 62: 1601–1606.

    CAS  Google Scholar 

  70. Yang, Y. Z., Block copolymers confined in thin films, Master Degree Thesis in Fudan University (in Chinese), 2006.

  71. Wood, S. M., Wang, Z. G., Nucleation in binary polymer blends: A self-consistent field study, J. Chem. Phys., 2002, 116: 2289–2300.

    Article  CAS  Google Scholar 

  72. Wang, J. F., Zhang, H. D., Qiu, F. et al., Nucleation in binary polymer blends: Effects of adding diblock copolymers, J. Chem. Phys., 2003, 118: 8997–9006.

    CAS  Google Scholar 

  73. Wang, J. F., Wang, Z. G., Yang, Y. L., Nucleation in binary polymer blends: Effects of foreign mesoscopic spherical particles, J. Chem. Phys., 2004, 121: 1105–1113.

    CAS  Google Scholar 

  74. Wang, J. F., Wang, Z. G., Yang, Y. L., Nature of disordered micelles in sphere-forming block copolymer melts, Macromolecules, 2005, 38: 1979–1988.

    CAS  Google Scholar 

  75. Xia, J. F., Sun, M. Z., Qiu, F. et al., Microphase ordering mechanisms in linear ABC triblock copolymers: A dynamic density functional study, Macromolecules, 2005, 38: 9324–9332.

    CAS  Google Scholar 

  76. Thompson, R. B., Ginzburg, V. V., Masten, M. W. et al., Predicting the mesophases of copolymer-nanoparticle composites, Science, 2001, 292: 2469–2472.

    Article  CAS  Google Scholar 

  77. Wang, Q., Taniguchi, T., Fredrickson, G. H., Self-consistent field theory of polyelectrolyte systems, J. Phys. Chem. B, 2004, 108: 6773–6744.

    Google Scholar 

  78. Reister, E., Fredrickson, G. H., Nanoparticles in a diblock co-polymer background: The potential of mean force, Macromolecules, 2004, 37: 4718–4730.

    Article  CAS  Google Scholar 

  79. Sides, S. W., Fredrickson, G. H., Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure, Polymer, 2003, 44: 5859–5866.

    Article  CAS  Google Scholar 

  80. Sun, M. Z., Microphase separation and shapes of vesicles based on self-consistent field theory, PhD Thesis in Fudan University (in Chinese), 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yuliang.

Additional information

This review was recommended by Prof. Li Lemin, member of editorial board of Science in China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Qiu, F., Tang, P. et al. Applications of self-consistent field theory in polymer systems. SCI CHINA SER B 49, 21–43 (2006). https://doi.org/10.1007/s11426-005-0190-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-005-0190-7

Keywords

Navigation