Skip to main content
Log in

Alleviating limit cycling in training GANs with an optimization technique

  • Articles
  • AI Methods for Optimization Problems
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we undertake further investigation to alleviate the issue of limit cycling behavior in training generative adversarial networks (GANs) through the proposed predictive centripetal acceleration algorithm (PCAA). Specifically, we first derive the upper and lower complexity bounds of PCAA for a general bilinear game, with the last-iterate convergence rate notably improving upon previous results. Then, we combine PCAA with the adaptive moment estimation algorithm (Adam) to propose PCAA-Adam, for practical training of GANs to enhance their generalization capability. Finally, we validate the effectiveness of the proposed algorithm through experiments conducted on bilinear games, multivariate Gaussian distributions, and the CelebA dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abernethy J, Lai K A, Wibisono A. Last-iterate convergence rates for min-max optimization: Convergence of Hamiltonian gradient descent and consensus optimization. In: Proceedings of the 32nd International Conference on Algorithmic Learning Theory. Berlin: Springer, 2021, 3–47

    Google Scholar 

  2. Alawieh M B, Li W, Lin Y, et al. High-definition routing congestion prediction for large-scale FPGAs. In: Proceedings of the 25th Asia and South Pacific Design Automation Conference. New York: IEEE, 2020, 26–31

    Google Scholar 

  3. Anagnostides I, Penna P. Solving zero-sum games through alternating projections. arXiv:2010.00109, 2020

  4. Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. New York: ICML, 2017, 214–223

    Google Scholar 

  5. Azizian W, Mitliagkas I, Lacoste-Julien S, et al. A tight and unified analysis of gradient-based methods for a whole spectrum of differentiable games. In: Proceedings of the Twenty-Third International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2020, 2863–2873

    Google Scholar 

  6. Bailey J P, Gidel G, Piliouras G. Finite regret and cycles with fixed step-size via alternating gradient descent-ascent. In: Proceedings of Thirty Third Annual Conference on Learning Theory. New York: PMLR, 2020, 391–407

    Google Scholar 

  7. Balduzzi D, Racaniere S, Martens J, et al. The mechanics of n-player differentiable games. In: Proceedings of the 35th International Conference on Machine Learning. New York: ICML, 2018, 354–363

    Google Scholar 

  8. Bao X C, Zhang G D. Finding and only finding local Nash equilibria by both pretending to be a follower. In: Proceedings of the ICLR 2022 Workshop on Gamification and Multiagent Solutions. Washington DC: ICLR, 2022

    Google Scholar 

  9. Berard H, Gidel G, Almahairi A, et al. A closer look at the optimization landscapes of generative adversarial networks. In: International Conference on Learning Representations. Washington DC: ICLR, 2020

    Google Scholar 

  10. Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations. Washington DC: ICLR, 2018

    Google Scholar 

  11. Cai S, Obukhov A, Dai D, et al. Pix2nerf: Unsupervised conditional π-GAN for single image to neural radiance fields translation. In: Computer Vision and Pattern Recognition. New York: IEEE, 2022, 3981–3990

    Google Scholar 

  12. Chae J, Kim K, Kim D. Open problem: Is there a first-order method that only converges to local minimax optima. In: Proceedings of Thirty Sixth Annual Conference on Learning Theory. New York: PMLR, 2023, 5957–5964

    Google Scholar 

  13. Chae J, Kim K, Kim D. Two-timescale extragradient for finding local minimax points. arXiv:2305.16242, 2023

  14. Chan E R, Lin C Z, Chan M A, et al. Efficient geometry-aware 3D generative adversarial networks. In: Computer Vision and Pattern Recognition. New York: IEEE, 2022, 16123–16133

    Google Scholar 

  15. Chavdarova T, Pagliardini M, Jaggi M, et al. Taming GANs with lookahead-minmax. In: International Conference on Learning Representations. Washington DC: ICLR, 2021

    Google Scholar 

  16. Crowson K, Biderman S, Kornis D, et al. VQGAN-CLIP: Open domain image generation and editing with natural language guidance. In: Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022, 88–105

    Google Scholar 

  17. Daskalakis C, Ilyas A, Syrgkanis V, et al. Training GANs with optimism. In: International Conference on Learning Representations. Washington DC: ICLR, 2018

    Google Scholar 

  18. Daskalakis C, Panageas I. The limit points of (optimistic) gradient descent in min-max optimization. In: Advances in Neural Information Processing Systems, vol. 31. Cambridge: MIT Press, 2018, 9236–9246

    Google Scholar 

  19. Daskalakis C, Panageas I. Last-iterate convergence: Zero-sum games and constrained min-max optimization. In: Innovations in Theoretical Computer Science Conference. Wadern: Dagstuhl Publishing, 2019

    Google Scholar 

  20. Fang S, Han F, Liang W Y, et al. An improved conditional generative adversarial network for microarray data. In: Proceedings of the International Conference on Intelligent Computing. Berlin: Springer, 2020, 105–114

    Google Scholar 

  21. Gidel G. Multi-player games in the era of machine learning. PhD Thesis. Montréal: Université de Montréal, 2021

    Google Scholar 

  22. Gidel G, Berard H, Vignoud G, et al. A variational inequality perspective on generative adversarial networks. In: International Conference on Learning Representations. Washington DC: ICLR, 2019

    Google Scholar 

  23. Gidel G, Hemmat R A, Pezeshki M, et al. Negative momentum for improved game dynamics. In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2019, 1802–1811

    Google Scholar 

  24. Gidel G, Jebara T, Lacoste-Julien S. Frank-Wolfe algorithms for saddle point problems. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017, 362–371

    Google Scholar 

  25. Goodfellow I. NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160, 2016

  26. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27. Cambridge: MIT Press, 2014, 2672–2680

    Google Scholar 

  27. Grnarova P, Kilcher Y, Levy K Y, et al. Generative minimization networks: Training GANs without competition. arXiv:2103.12685, 2021

  28. He H, Zhao S F, Xi Y Z, et al. AGE: Enhancing the convergence on GANs using alternating extra-gradient with gradient extrapolation. In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. Cambridge: MIT Press, 2021

    Google Scholar 

  29. He H, Zhao S F, Xi Y Z, et al. Solve minimax optimization by Anderson acceleration. In: International Conference on Learning Representations. Washington DC: ICLR, 2022

    Google Scholar 

  30. Hsieh Y P. Convergence without convexity: Sampling, optimization, and games. PhD Thesis. Lausanne: École Polytechnique Fédérale de Lausanne, 2020

    Google Scholar 

  31. Jesse E, Kumar K A, Shuo C, et al. GANSynth: Adversarial neural audio synthesis. In: International Conference on Learning Representations. Washington DC: ICLR, 2019

    Google Scholar 

  32. Jin C, Netrapalli P, Jordan M I. What is local optimality in nonconvex-nonconcave minimax optimization. In: Proceedings of the 37th International Conference on Machine Learning. New York: ICML, 2020, 4880–4889

    Google Scholar 

  33. Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014

  34. Korpelevich G M. The extragradient method for finding saddle points and other problems. Matecon, 1976, 12: 747–756

    MathSciNet  Google Scholar 

  35. Lei N, An D S, Guo Y, et al. A geometric understanding of deep learning. Engineering, 2020, 6: 361–374

    Article  Google Scholar 

  36. Li K K, Yang X M, Zhang K. Training GANs with predictive centripetal acceleration (in Chinese). Sci Sin Math, 2024, 54: 671–698

    Google Scholar 

  37. Liang T Y, Stokes J. Interaction matters: A note on non-asymptotic local convergence of generative adversarial networks. In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2019, 907–915

    Google Scholar 

  38. Lin T Y, Jin C, Jordan M I. On gradient descent ascent for nonconvex-concave minimax problems. In: Proceedings of the 37th International Conference on Machine Learning. New York: ICML, 2020, 6083–6093

    Google Scholar 

  39. Lorraine J, Acuna D, Vicol P, et al. Complex momentum for learning in games. arXiv:2102.08431, 2021

  40. Lv W, Xiong J, Shi J, et al. A deep convolution generative adversarial networks based fuzzing framework for industry control protocols. J Intell Manu, 2021, 32: 441–457

    Article  Google Scholar 

  41. Mazumdar E V, Jordan M I, Sastry S S. On finding local Nash equilibria (and only local Nash equilibria) in zero-sum games. arXiv:1901.00838, 2019

  42. Mertikopoulos P, Papadimitriou C, Piliouras G. Cycles in adversarial regularized learning. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2018, 2703–2717

    Google Scholar 

  43. Mertikopoulos P, Zenati H, Lecouat B, et al. Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile. In: International Conference on Learning Representations. Washington DC: ICLR, 2019

    Google Scholar 

  44. Mescheder L, Geiger A, Nowozin S. Which training methods for GANs do actually converge. In: Proceedings of the 35th International Conference on Machine Learning. New York: ICML, 2018, 3481–3490

    Google Scholar 

  45. Mescheder L, Nowozin S, Geiger A. The numerics of GANs. In: Advances in Neural Information Processing Systems, vol. 30. Cambridge: MIT Press, 2017, 1825–1835

    Google Scholar 

  46. Mishchenko K, Kovalev D, Shulgin E, et al. Revisiting stochastic extragradient. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2020, 4573–4582

    Google Scholar 

  47. Mokhtari A, Ozdaglar A, Pattathil S. A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach. In: Proceedings of the Twenty-Third International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2020, 1497–1507

    Google Scholar 

  48. Nedić A, Ozdaglar A. Subgradient methods for saddle-point problems. J Optim Theo Appl, 2009, 142: 205–228

    Article  MathSciNet  Google Scholar 

  49. Odena A. Open questions about generative adversarial networks. Distill, 2019, 4: e18

    Article  Google Scholar 

  50. Ouyang Y Y, Xu Y Y. Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. Math Program, 2021, 185: 1–35

    Article  MathSciNet  Google Scholar 

  51. Peng W, Dai Y H, Zhang H, et al. Training GANs with centripetal acceleration. Optim Methods Softw, 2020, 35: 1–19

    Article  MathSciNet  Google Scholar 

  52. Pethick T, Latafat P, Patrinos P, et al. Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems. arXiv:2302.09831, 2023

  53. Pinetz T, Soukup D, Pock T. What is optimized in Wasserstein GANs. In: Proceedings of the 23rd Computer Vision Winter Workshop. New York: IEEE, 2018

    Google Scholar 

  54. Qu Y Y, Zhang J W, Li R D, et al. Generative adversarial networks enhanced location privacy in 5G networks. Sci China Inf Sci, 2020, 63: 1–12

    Article  MathSciNet  Google Scholar 

  55. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434, 2015

  56. Razavi-Far R, Ruiz-Garcia A, Palade V, et al. Generative Adversarial Learning: Architectures and Applications. Cham: Springer, 2022

    Google Scholar 

  57. Ryu E K, Yuan K, Yin W T. ODE analysis of stochastic gradient methods with optimism and anchoring for minimax problems and GANs. arXiv:1905.10899, 2019

  58. Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29. Cambridge: MIT Press, 2016, 2234–2242

    Google Scholar 

  59. Saxena D, Cao J. Generative adversarial networks (GANs) challenges, solutions, and future directions. ACM Comput Sur, 2021, 54: 1–42

    Google Scholar 

  60. Shen J Y, Chen X H, Heaton H, et al. Learning a minimax optimizer: A pilot study. In: International Conference on Learning Representations. Washington DC: ICLR, 2020

    Google Scholar 

  61. Skorokhodov I, Tulyakov S, Elhoseiny M. StyleGAN-V: A continuous video generator with the price, image quality and perks of StyleGAN2. In: Computer Vision and Pattern Recognition. New York: IEEE, 2022, 3626–3636

    Google Scholar 

  62. Vondrick C, Pirsiavash H, Torralba A. Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, vol. 29. Cambridge: MIT Press, 2016, 613–621

    Google Scholar 

  63. Wang Y. A mathematical introduction to generative adversarial nets (GAN). arXiv:2009.00169, 2020

  64. Xu Z, Zhang H L. Optimization algorithms and their complexity analysis for non-convex minimax problems (in Chinese). Oper Res Trans, 2021, 25: 74–86

    MathSciNet  Google Scholar 

  65. Yuan Y X, Bai Y Q, Chen J W, et al. Chinese Discipline Development Strategy · Mathematical Optimization (in Chinese). Beijing: Science Press, 2020

    Google Scholar 

  66. Zhang G J, Yu Y L. Convergence behaviour of some gradient-based methods on bilinear zero-sum games. In: International Conference on Learning Representations. Washington DC: ICLR, 2020

    Google Scholar 

  67. Zhang J Y, Hong M Y, Zhang S Z. On lower iteration complexity bounds for the convex concave saddle point problems. Math Program, 2022, 194: 901–935

    Article  MathSciNet  Google Scholar 

  68. Zhang M, Lucas J, Ba J, et al. Lookahead optimizer: k steps forward, 1 step back. In: Advances in Neural Information Processing Systems, vol. 32. Cambridge: MIT Press, 2019, 9597–9608

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (Grant Nos. 11991020 and 11991024), the Team Project of Innovation Leading Talent in Chongqing (Grant No. CQYC20210309536), NSFC-RGC (Hong Kong) Joint Research Program (Grant No. 12261160365), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202300528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Tang, L. & Yang, X. Alleviating limit cycling in training GANs with an optimization technique. Sci. China Math. 67, 1287–1316 (2024). https://doi.org/10.1007/s11425-023-2296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-023-2296-5

Keywords

MSC(2020)

Navigation