Skip to main content
Log in

The character of Thurston’s circle packings

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We introduce the character of Thurston’s circle packings in the hyperbolic background geometry Consequently, some quite simple criteria are obtained for the existence of hyperbolic circle packings. For example, if a closed surface X admits a circle packing with all the vertex degrees di ⩾ 7, then it admits a unique complete hyperbolic metric so that the triangulation graph of the circle packing is isotopic to a geometric decomposition of X. This criterion is sharp due to the fact that any closed hyperbolic surface admits no triangulations with all di ⩽ 6. As a corollary, we obtain a new proof of the uniformization theorem for closed surfaces with genus g ⩾ 2, and moreover, any hyperbolic closed surface has a geometric decomposition. To obtain our results, we use Chow-Luo’s combinatorial Ricci flow as a fundamental tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev E. On convex polyhedra in Lobačevskiĭ spaces. Mat Sb, 1970, 81/123: 445–478

    Google Scholar 

  2. Andreev E. On convex polyhedra of finite volume in Lobačevskiĭ space. Mat Sb, 1970, 83/125: 256–260

    Google Scholar 

  3. Bao X, Bonahon F. Hyperideal polyhedra in hyperbolic 3-space. Bull Soc Math France, 2002, 130: 457–491

    Article  MathSciNet  Google Scholar 

  4. Bobenko A, Hoffmann T, Springborn B. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann of Math (2), 2006, 164: 231–264

    Article  MathSciNet  Google Scholar 

  5. Bobenko A, Springborn B. Variational principles for circle patterns and Koebe’s theorem. Trans Amer Math Soc, 2004, 356: 659–689

    Article  MathSciNet  Google Scholar 

  6. Bowditch B. Singular Euclidean structures on surfaces. J Lond Math Soc (2), 1991, 44: 553–565

    Article  MathSciNet  Google Scholar 

  7. Bowers P L, Stephenson K. The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense. Math Proc Cambridge Philos Soc, 1992, 111: 487–513

    Article  MathSciNet  Google Scholar 

  8. Bowers P L, Stephenson K. Uniformizing Dessins and Belyč Maps via Circle Packing. Memoirs of the American Mathematical Society, vol. 805. Providence: Amer Math Soc, 2004

    Google Scholar 

  9. Chow B, Luo F. Combinatorial Ricci flows on surfaces. J Differential Geom, 2003, 63: 97–129

    Article  MathSciNet  Google Scholar 

  10. Dai J, Gu X, Luo F. Variational Principles for Discrete Surfaces. Beijing: Higher Ed Press, 2008

    Google Scholar 

  11. de Verdière Y C. Un principe variationnel pour les empilements de cercles. Invent Math, 1991, 104: 655–669

    Article  MathSciNet  Google Scholar 

  12. Edmonds A L, Ewing J H, Kulkarni R S. Regular tessellations of surfaces and (p, q, 2)-triangle groups. Ann of Math (2), 1982, 116: 113–132

    Article  MathSciNet  Google Scholar 

  13. Feng K, Ge H, Hua B. Combinatorial Ricci flows and the hyperbolization of a class of compact 3-manifolds. Geom Topol, 2022, 26: 1349–1384

    Article  MathSciNet  Google Scholar 

  14. Ge H, Hua B. 3-dimensional combinatorial Yamabe flow in hyperbolic background geometry. Trans Amer Math Soc, 2020, 373: 5111–5140

    Article  MathSciNet  Google Scholar 

  15. Ge H, Hua B, Zhou Z. Combinatorial Ricci flows for ideal circle patterns. Adv Math, 2021, 383: 107698

    Article  MathSciNet  Google Scholar 

  16. Ge H, Hua B, Zhou Z. Circle patterns on surfaces of finite topological type. Amer J Math, 2021, 143: 1397–1430

    Article  MathSciNet  Google Scholar 

  17. Ge H, Jiang W. On the deformation of inversive distance circle packings, II. J Funct Anal, 2017, 272: 3573–3595

    Article  MathSciNet  Google Scholar 

  18. Ge H, Jiang W, Shen L. On the deformation of ball packings. Adv Math, 2022, 398: 108192

    Article  MathSciNet  Google Scholar 

  19. He Z X, Liu J S. On the Teichmuüller theory of circle patterns. Trans Amer Math Soc, 2013, 365: 6517–6541

    Article  MathSciNet  Google Scholar 

  20. He Z X, Schramm O. Fixed points, Koebe uniformization and circle packings. Ann of Math (2), 1993, 137: 369–406

    Article  MathSciNet  Google Scholar 

  21. He Z X, Schramm O. Rigidity of circle domains whose boundary has σ-finite linear measure. Invent Math, 1994, 115: 297–310

    Article  MathSciNet  Google Scholar 

  22. He Z X, Schramm O. Koebe uniformization for “almost circle domains”. Amer J Math, 1995, 117: 653–667

    Article  MathSciNet  Google Scholar 

  23. Hodgson C D, Rivin I. A characterization of compact convex polyhedra in hyperbolic 3-space. Invent Math, 1993, 111: 77–111

    Article  MathSciNet  Google Scholar 

  24. Huang X, Liu J. Characterizations of circle patterns and finite convex polyhedra in hyperbolic 3-space. Math Ann, 2017, 368: 213–231

    Article  MathSciNet  Google Scholar 

  25. Koebe P. Kontaktprobleme der konformen Abbildung. Ber Süachs Akad Wiss Leipzig, Math-Phys Kl, 1936, 88: 141–164

    Google Scholar 

  26. Leibon G. Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geom Topol, 2002, 6: 361–391

    Article  MathSciNet  Google Scholar 

  27. Liu J, Zhou Z. How many cages midscribe an egg. Invent Math, 2016, 203: 655–673

    Article  MathSciNet  Google Scholar 

  28. Luo F. A combinatorial curvature flow for compact 3-manifolds with boundary. Electron Res Announc Amer Math Soc, 2005, 11: 12–20

    Article  MathSciNet  Google Scholar 

  29. Marden A, Rodin B. On Thurston’s formulation and proof of Andreev’s theorem. In: Computational Methods and Function Theory. Lecture Notes in Mathematics, vol. 1435. Berlin: Springer, 1990, 103–115

    Chapter  Google Scholar 

  30. Martelli B. An introduction to geometric topology. http://people.dm.unipi.it/martelli/geometric_topology.html, 2023

  31. Rivin I. Euclidean structures on simplicial surfaces and hyperbolic volume. Ann of Math (2), 1994, 139: 553–580

    Article  MathSciNet  Google Scholar 

  32. Rivin I. A characterization of ideal polyhedra in hyperbolic 3-space. Ann of Math (2), 1996, 143: 51–70

    Article  MathSciNet  Google Scholar 

  33. Rodin B, Sullivan D. The convergence of circle packings to the Riemann mapping. J Differential Geom, 1987, 26: 349–360

    Article  MathSciNet  Google Scholar 

  34. Rousset M. Sur la rigidité de polyèdres hyperboliques en dimension 3: Cas de volume fini, cas hyperidéal, cas fuchsien. Bull Soc Math France, 2004, 132: 233–261

    Article  MathSciNet  Google Scholar 

  35. Schlenker J M. Hyperideal circle patterns. Math Res Lett, 2005, 12: 85–102

    Article  MathSciNet  Google Scholar 

  36. Schramm O. How to cage an egg. Invent Math, 1992, 107: 543–560

    Article  MathSciNet  Google Scholar 

  37. Stephenson K. Introduction to Circle Packing. The Theory of Discrete Analytic Functions. Cambridge: Cambridge Univ Press, 2005

    Google Scholar 

  38. Thurston W. The Geometry and Topology of Three-Manifolds. Princeton: Princeton Univ Press, 1979

    Google Scholar 

  39. Zhou Z. Circle patterns with obtuse exterior intersection angles. arXiv:1703.01768v3, 2019

  40. Zhou Z. Producing circle patterns via configurations. arXiv:2010.13076v9, 2021

Download references

Acknowledgements

Huabin Ge was supported by National Natural Science Foundation of China (Grant Nos. 11871094 and 12122119). Aijin Lin was supported by National Natural Science Foundation of China (Grant No. 12171480), Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4658 and 2022JJ10059), and Scientific Research Program Funds of National University of Defense Technology (Grant No. 22-ZZCX-016). The second author thanks Ke Feng and Ze Zhou for communication on related topics. The authors thank Liangming Shen for many useful conversations. The authors are very grateful to the referees for carefully reading the original manuscript and pointing out some typos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Lin, A. The character of Thurston’s circle packings. Sci. China Math. (2024). https://doi.org/10.1007/s11425-023-2182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11425-023-2182-2

Keywords

MSC(2020)

Navigation