Skip to main content
Log in

Non-symmetric differentially subordinate martingales and sharp weak-type bounds for Fourier multipliers

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let p> 2 be a given exponent. In this paper, we prove, with the best constant, the weak-type (p,p) inequality

$$\Vert T_{m}f\Vert_{L^{p,\infty}(\mathbb{R}^{d})}\leqslant C_{p}\Vert f\Vert_{L^{p}(\mathbb{R}^{d})}$$

for a large class of non-symmetric Fourier multipliers Tm obtained via modulation of jumps of certain Lévy processes. In particular, the estimate holds for appropriate linear combinations of second-order Riesz transforms and skew versions of the Beurling-Ahlfors operator on the complex plane. The proof rests on a novel probabilistic bound for Hilbert-space-valued martingales satisfying a certain non-symmetric subordination principle. Further applications to harmonic functions and Riesz systems on Euclidean domains are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Arcozzi N. Riesz transforms on compact Lie groups, spheres and Gauss space. Ark Mat, 1998, 36: 201–231

    Article  MathSciNet  Google Scholar 

  2. Astala K, Faraco D, Székelyhidi L Jr. Convex integration and the Lp theory of elliptic equations. Ann Sc Norm Super Pisa Cl Sci (5), 2008, 7: 1–50

    MathSciNet  Google Scholar 

  3. Astala K, Iwaniec T, Martin G. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton: Princeton Univ Press, 2009

    Google Scholar 

  4. Baernstein II A, Montgomery-Smith S. Some conjectures about integral means of ∂f and \(\bar{\partial} f\). In: Complex Analysis and Differential Equations. Uppsala: Uppsala Universitet, 1999, 92–109

    Google Scholar 

  5. Bañuelos R, Bielaszewski A, Bogdan K. Fourier multipliers for non-symmetric Lévy processes. Banach Center Publ, 2011, 95: 9–25

    Article  Google Scholar 

  6. Bañuelos R, Bogdan K. Lévy processes and Fourier multipliers. J Funct Anal, 2007, 250: 197–213

    Article  MathSciNet  Google Scholar 

  7. Bañuelos R, Mendez-Hernandez P J. Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ Math J, 2003, 52: 981–990

    Article  MathSciNet  Google Scholar 

  8. Bañuelos R, Osękowski A. Martingales and sharp bounds for Fourier multipliers. Ann Acad Sci Fenn Math, 2012, 37: 251–263

    Article  MathSciNet  Google Scholar 

  9. Bañuelos R, Osękowski A. Sharp martingale inequalities and applications to Riesz transforms on manifolds, Lie groups and Gauss space. J Funct Anal, 2015, 269: 1652–1713

    Article  MathSciNet  Google Scholar 

  10. Bañuelos R, Wang G. Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms. Duke Math J, 1995, 80: 575–600

    Article  MathSciNet  Google Scholar 

  11. Boros N, Szekelyhidi L Jr, Volberg A. Laminates meet Burkholder functions. J Math Pures Appl (9), 2013, 100: 587–600

    Article  MathSciNet  Google Scholar 

  12. Burkholder D L. Boundary value problems and sharp inequalities for martingale transforms. Ann Probab, 1984, 12: 647–702

    Article  MathSciNet  Google Scholar 

  13. Burkholder D L. An extension of a classical martingale inequality. In: Probability Theory and Harmonic Analysis. New York: Marcel Dekker, 1986, 21–30

    Google Scholar 

  14. Burkholder D L. Explorations in martingale theory and its applications. In: Lecture Notes in Mathematics, vol. 1464. Berlin: Springer, 1991, 1–66

    Google Scholar 

  15. Choi K P. A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in Lp(0,1). Trans Amer Math Soc, 1992, 330: 509–529

    MathSciNet  Google Scholar 

  16. Conti S, Faraco D, Maggi F. A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch Ration Mech Anal, 2005, 175: 287–300

    Article  MathSciNet  Google Scholar 

  17. Dacorogna B. Direct Methods in the Calculus of Variations. Berlin: Springer, 1989

    Book  Google Scholar 

  18. Dellacherie C, Meyer P-A. Probabilities and Potential B: Theory of Martingales. Amsterdam: North-Holland, 1982

    Google Scholar 

  19. Faraco D. Milton’s conjecture on the regularity of solutions to isotropic equations. Ann Inst H Poincare Anal Non Lineaire, 2003, 20: 889–909

    Article  MathSciNet  Google Scholar 

  20. Gehring F W, Reich E. Area distortion under quasiconformal mappings. Ann Acad Sci Fenn Math, 1966, 388: 1–15

    MathSciNet  Google Scholar 

  21. Geiss S, Montgomery-Smith S, Saksman E. On singular integral and martingale transforms. Trans Amer Math Soc, 2010, 362: 553–575

    Article  MathSciNet  Google Scholar 

  22. Iwaniec T. Extremal inequalities in Sobolev spaces and quasiconformal mappings. Z Anal Anwend, 1982, 1: 1–16

    Article  MathSciNet  Google Scholar 

  23. Iwaniec T. The best constant in a BMO-inequality for the Beurling-Ahlfors transform. Michigan Math J, 1986, 33: 387–394

    Article  MathSciNet  Google Scholar 

  24. Iwaniec T. Hilbert transform in the complex plane and area inequalities for certain quadratic differentials. Michigan Math J, 1987, 34: 407–434

    Article  MathSciNet  Google Scholar 

  25. Kirchheim B. Rigidity and geometry of microstructures. Habilitation Thesis. Leipzig: University of Leipzig, 2003

    Google Scholar 

  26. Kirchheim B, Müller S, Sverák V. Studying nonlinear PDE by geometry in matrix space. In: Geometric Analysis and Nonlinear Partial Differential Equations. Berlin: Springer, 2003, 347–395

    Chapter  Google Scholar 

  27. Muüller S, Šveráak V. Convex integration for Lipschitz mappings and counter examples to regularity. Ann of Math (2), 2003, 157: 715–742

    Article  MathSciNet  Google Scholar 

  28. Osçkowski A. Sharp weak type inequalities for the Haar system and related estimates for non-symmetric martingale transforms. Proc Amer Math Soc, 2012, 140: 2513–2526

    Article  MathSciNet  Google Scholar 

  29. Osçkowski A. Sharp Martingale and Semimartingale Inequalities. Monografie Matematyczne, vol. 72. Basel: Birkhauser, 2012

    Book  Google Scholar 

  30. Osçkowski A. Logarithmic inequalities for Fourier multipliers. Math Z, 2013, 274: 515–530

    Article  MathSciNet  Google Scholar 

  31. Osçkowski A. Weak-type inequalities for Fourier multipliers with applications to the Beurling-Ahlfors transform. J Math Soc Japan, 2014, 66: 745–764

    MathSciNet  Google Scholar 

  32. Osçkowski A. On restricted weak-type constants of Fourier multipliers. Publ Mat, 2014, 58: 415–443

    Article  MathSciNet  Google Scholar 

  33. Rosiński J. Tempering stable processes. Stochastic Process Appl, 2007, 117: 677–707

    Article  MathSciNet  Google Scholar 

  34. Sato K-I. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999

    Google Scholar 

  35. Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univ Press, 1970

    Google Scholar 

  36. Stein E M, Weiss G. On the theory of harmonic functions of several variables: I. The theory of Hp-spaces. Acta Math, 1960, 103: 25–62

    Article  MathSciNet  Google Scholar 

  37. Suh Y. A sharp weak type (p,p) inequality (p> 2) for martingale transforms and other subordinate martingales. Trans Amer Math Soc, 2005, 357: 1545–1564

    Article  MathSciNet  Google Scholar 

  38. Székelyhidi L Jr. Counterexamples to elliptic regularity and convex integration. Contemp Math, 2007, 424: 227–245

    Article  MathSciNet  Google Scholar 

  39. Wang G. Differential subordination and strong differential subordination for continuous time martingales and related sharp inequalities. Ann Probab, 1995, 23: 522–551

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Yong Jiao was supported by National Natural Science Foundation of China (Grant Nos. 12125109 and 11961131003). The authors thank the referees for their careful reading of the paper and several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Osękowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akboudj, M., Jiao, Y. & Osękowski, A. Non-symmetric differentially subordinate martingales and sharp weak-type bounds for Fourier multipliers. Sci. China Math. (2024). https://doi.org/10.1007/s11425-023-2147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11425-023-2147-6

Keywords

MSC(2020)

Navigation